数据化创业培训心得体会实用 数字化营销培训心得(9篇)
从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。
对于数据化创业培训心得体会实用一
我叫,20xx年3月份进入公司工作,现任公司调度员,现将我20xx年的工作情况简要汇报如下,敬请各位领导评议。我的述职报告共分以下三个部分:
一、20xx年工作回顾
1、积极学习,自我提高
只有懂生产、了解生产,才能很好的服务生产、监督生产。无论是管理经验,还是业务水平,都与优秀的调度员存在很大的差距。所以,我积极学习,虚心向老工人请教,到车间生产一线,了解生产现状,提高业务技能,提升管理水平。
2、精心调度,合理安排生产
每月月底结合各个分厂下月肉制品大致产量,制定出合理的内转产销量,结合销售部,制定外销产品的产销计划。即保证正常的生产运行,又没有造成不良库存;每日下午根据次日销售订单及发货情况,结合车间实际生产状况及仓库现有库存量,安排合理的次日生产计划,满足市场正常供应;每天依据生产计划,跟踪生产进度,及时正确解决生产中出现的各种问题,保证生产计划及时完成。
3、和各个部门沟通协调,保障生产顺利进行
和集团公司采购部门保持良好的沟通,保证原辅包的及时供应;协助销售部,组织好外销产品的发运工作;和品管部、事业部、技术中心相关人员紧密结合,对生产中出现的问题,及时协调解决,保障生产的顺利进行。
4、充分发挥监督考核职能,做好日常管理工作
从现场卫生、生产过程过程、成本、质量、计划、工艺、安全、库房、数据交接、出门证管理等日常管理工作入手,定期组织相关人员检查,对检查中发现的问题整改落实情况进行跟踪,做好公司的各项日常管理工作。
二、工作中存在的不足
1、管理考核上放不开手脚
以往的工作只注重服务和协调,缺少监督和考核。在管理考核力度上不够,不能够很好的起到监督考核的作用。
2、在对两名新调度员的传帮带工作上没有做好
由于没有很好的对新人做好传帮带的工作,致使两名新调度员在很长的一段时间上找不到工作方向和工作重点。
3、工作的细致度上面还不够精细
由于以往的工作中存在粗心大意,细致度不够,致使个人工作中出现纰漏,出现问题。
三、下一步工作思路
1、谦虚务实、进一步加强学习,全面提高个人综合素质
学海无涯,知识无限。只有不断的学习,才能不断地提高和进步,才能跟得上公司发展的步伐。20xx年公司产品结构面临全面调整转型,将涉足很多新的领域,在新的领域要努力学习,快速掌握各种生产中的技术知识,为公司产品结构的顺利转型做好衔接工作。
2、充分协调好各个方面的资源,确保产供销的顺利进行
合理安排、精心调度,保障好生产、协调好生产、服务好生产、指导好生产、监督好生产,保证生产、销售工作的顺利进行。
3、不断提高工作水平,做好领导助手
多谋才能善断。立足发展变化的新情况,多动脑筋、想办法、出主意,发挥参谋助手作用,不断提高工作水平;
强化理论知识学习,进一步提高避免问题发生的预见性;进一步提升责任意识,增强工作的主动性、预见性、创造性,以较高的技术理论素养和业务工作能力为领导出谋划策、查漏补缺,不折不扣的完成领导交付的工作,做好领导的左右手。
4、立足本职工作,工作不留空档
对本职工作一定要抓紧抓好,做到抓一件成一件,件件有交代,项项有落实。其他的工作,也要义不容辞承担起来,做到工作不留空档,确保各项工作全面推进。
尊敬的各位领导、各位评委:
20xx年,我将进一步加强学习,认真工作,在经理的领导下充分发挥好调度员服务、协调、监督、考核的职能,按照公司的要求,出色的做好各项工作。
对于数据化创业培训心得体会实用二
如何做好一份数据分析报告
现有数据分析报告当中存在一些问题,我们对现有的数据分析报告当中的问题进行分析,来找到如何做出更高质量的数据分析报告。
一、基础数据的采集缺乏科学依据
基础数据的采集对于整个数据分析报告具有非常重要的意义,基础数据采集的科学性决定了这个数据分析报告是不是有使用价值。只有当数据采集具有科学性、客观、严密的逻辑性时,建立在这样的数据分析基础之上的经济效益评价、现金流量分析以及数据分析结论才具有现实的价值和意义。一般来说,当拿到一个项目时我们首先会结合项目的特点来进行基础数据分析,一个项目刚形成,从无到有的时候,基础数据一般采用一手的数据,因为它没有历史的轨迹来遵循,所以用一手数据资料来进行分析。一手数据的采集方法比如:问卷调查、观察、抽样技术等等,来对一手数据进行分析。通常对拥有大量的历史数据的项目如服装业等,数据采集可借鉴同等的规模或一些历史数据,以他为基础来进一步研究和分析。同时也可借鉴行业公开的资料、网上资料、统计的年鉴等等来进行分析。从现有的数据分析报告来看,很多基础的数据就是简单的摆在那里,没有数据来源,数据提示,没有对基础数据严谨的分析。
作为数据分析报的使用方而言,拿到这样的报告会对于报告的科学性提出质疑。
二、数据分析的过程缺乏逻辑性,论证的结论不具备系统性 很多数据分析报告一般都是前面是一堆数据,后面是一个结论。当真正的研究数据和结论时,是结果单一,数据和结论找不到必然的联系,要不就是只有一个结论,比如对净现值、内部收益率做出说明等等。作为专业的数据分析报告,必须充分的考虑每一个数字科学来源的基础上运用定量的模型来对数据进行分析,一步步推导到数据的结论上。
例如,一个项目不确定性分析,风险概率分析
(一)、 什么是影响这个项目的风险点,这些风险因素就是我们通常意义上的不确定性分析的模型来做
(二)、在这样的风险因素基础上,哪一些风险因素对投资项目的效益有重大影响,这些因素通过敏感性分析可以找出来。
(三)、找出这些风险因素下一步就是分析,这些影响效益的风险点出现的概率有多大?
三步分析完之后,风险对于这个项目的影响就显露出来,到这个时候只是数据分析的第一步工作。有一些数字和比率出现在报告上,更重要的在于结论,针对于这样的分险因素和风险变量(不可避免的),作为数据分析报告必须能搞提出来如何在项目的操作中
有效的防范这些风险。这样的风险点的提出和风险因素的防范对于报告的使用者来说是有意义的。
三、现有的数据分析报的结论单一,仅仅对于项目的可行性和计划性进行研究
建立在定量研究的基础上的数据分析报告和分析师还需要对于整个项目的战略规划提供一些更有价值得东西,包括项目中对于总投资
数据化创业培训心得体会实用 数字化营销培训心得(9篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。