数学新课程理念心得体会总结 数学新课表心得体会(八篇)
心中有不少心得体会时,不如来好好地做个总结,写一篇心得体会,如此可以一直更新迭代自己的想法。那么心得体会怎么写才恰当呢?以下是小编帮大家整理的心得体会范文,欢迎大家借鉴与参考,希望对大家有所帮助。
有关数学新课程理念心得体会总结一
教学目标
1、 知识与技能
(1)进一步理解表达式y=asin(ωx φ),掌握a、φ、ωx φ的含义;(2)熟练掌握由 的图象得到函数 的图象的方法;(3)会由函数y=asin(ωx φ)的图像讨论其性质;(4)能解决一些综合性的问题。
2、 过程与方法
通过具体例题和学生练习,使学生能正确作出函数y=asin(ωx φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
3、 情感态度与价值观
通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
教学重难点
重点:函数y=asin(ωx φ)的图像,函数y=asin(ωx φ)的性质。
难点: 各种性质的应用。
教学工具
投影仪
教学过程
【创设情境,揭示课题】
函数y=asin(ωx φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=asin(ωx φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。
五、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、布置作业: 习题1-7第4,5,6题.
课后小结
归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业: 习题1-7第4,5,6题.
板书
略
有关数学新课程理念心得体会总结二
光阴似箭,又是一个学期的开始,很荣幸又参加了此次的培训,也很高兴有这么一个分享的机会。培训资料简直就是两个字丰富,它为我们在教学过程当中量身定做了一个很好的平台,让我们看到别人的成长和进步,也让自身看到了自己的长处,觉得自身或许更优秀的地方。透过这次培训,我发此刻平时可教学当中并不完全是学生的原因。要想真正上好数学课,不仅仅要有基础的数学知识,还要懂得在课堂上如何调动学生学习的用心性,怎样激发学生学习数学的兴趣
那么,在课堂上怎样才能激发学生的学习兴趣呢?
1.改变上课的学习环境。
上课时,先不着急教学知识,而是先创设学生感兴趣的教学情境,先把学生的注意力引入课堂。
2.改革教学方法。
在上课时,要思考到学生的年龄特点,开展多种活动。好玩是孩子的天性,要抓住学生的这个特点,让他们在玩中学,又在学中玩。这样既让学生乐于理解所要学习的东西,又帮忙他们理解了知识。
3.改善课堂氛围。
以前在上课的时候,很怕学生吵,要求学生持续安静。但在教学的过程中,我发现适当地“吵闹”并没有什么不好,当然这个“吵闹”不是真的吵,而是在课堂中为学生营造一个争论的环境。这种争论有助于学生对知识的理解,让学生在竞争中相互学习,又在学习中共同进步。
4.加强沟通。
在学习数学的过程中,要经常和学生沟通,进入他们的世界,不能只是一味的想和做。俗话说“一个巴掌拍不响”,只有真正了解学生,把握孩子的认知规律,在教学是才能事半功倍。
在我看来,一堂好的数学课,不仅仅只是要传授给学生知识,还要帮忙学生理解、掌握知识。因此,需要我们努力的东西还很多,在后面将会更加努力学习,学习当中和学生共同学习,并不是说小学生他什么都不懂,仔细去研究其实他们身上也有不少的优点,只是他们或许不明白这是他们的有点罢了,好比说学生一个甜蜜的微笑,一个十分好的语言语气,一个良好的态度,或者说一个听话懂事过程当中的尊重他人的一面,这些你能够透过一些小事情去展开,其实有很多身边的人都做不到的地方,因为其实大的道理就是一些小的道理,能把身边的细节做好我相信没有做不了的事情,哪来多多少真理。
有关数学新课程理念心得体会总结三
数学是一们基础学科,我们从小就开始接触到它。现在我们已经步入高中,由于高中数学对知识的难度、深度、广度要求更高,有一部分同学由于不适应这种变化,数学成绩总是不如人意。甚至产生这样的困惑:“我在初中时数学成绩很好,可现在怎么了?”其实,学习是一个不断接收新知识的过程。正是由于你在进入高中后学习方法或学习态度的影响,才会造成学得累死而成绩不好的后果。那么,究竟该如何学好高中数学呢?以下我谈谈我的高中数学学习心得。
一、认清学习的能力状态。
1、心理素质。我们在高中学习环境下取决于我们是否具有面对挫折、冷静分析问题的办法。当我们面对困难时不应产生畏惧感,面对失败时不应灰心丧气,而要勇于正视自己,及时作出总结教训,改变学习方法。
2、学习方式、习惯的反思与认识。(1)学习的主动性。我们在进入高中以后,不能还像初中时那样有很强的依赖心理,不订学习计划,坐等上课,课前不预习,上课忙于记笔记而忽略了真正的听课,顾此失彼,被动学习。(2)学习的条理性。我们在每学习一课内容时,要学会将知识有条理地分为若干类,剖析概念的内涵外延,重点难点要突出。不要忙于记笔记,而对要点没有听清楚或听不全。笔记记了一大摞,问题也有一大堆。如果还不能及时巩固、总结,而忙于套着题型赶作业,对概念、定理、公式不能理解而死记硬背,则会事倍功半,收效甚微。(3)忽视基础。在我身边,常有些“自我感觉良好”的同学,忽视基础知识、基本技能和基本方法,不能牢牢地抓住课本,而是偏重于对难题的攻解,好高骛远,重“量”而轻“质”,陷入题海,往往在考试中不是演算错误就是中途“卡壳”。(4)不良习惯。主要有对答案,卷面书写不工整,格式不规范,不相信自己的结论,缺乏对问题解决的信心和决心,遇到问题不能独立思考,养成一种依赖于老师解说的心理,做作业不讲究效率,学习效率不高。
二、努力提高自己的学习能力。
1、抓要点提高学习效率。(1)抓教材处理。正所谓“万变不离其中”。要知道,教材始终是我们学习的根本依据。教学是活的,思维也是活的,学习能力是随着知识的积累而同时形成的。我们要通过老师教学,理解所学内容在教材中的地位,并将前后知识联系起来,把握教材,才能掌握学习的主动性。(2)抓问题暴露。对于那些典型的问题,必须及时解决,而不能把问题遗留下来,而要对遗留的问题及时、有效的解决。(3)抓思维训练。数学的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。我们在平时的训练中,要注重一个思维的过程,学习能力是在不断运用中才能培养出来的。(5)抓45分钟课堂效率。我们学习的大部分时间都在学校,如果不能很好地抓住课堂时间,而寄希望于课外去补,则会使学习效率大打折扣。
2、加强平时的训练强度。因为有些知识只有在解题过程中,才能体会到它的真正含义。因此,在平时要保持一定的训练度,适量地做一些有典型代表性的题目,弄懂吃透。
3、及时的巩固、复习。在每学完一课内容时,可抽出5-10分钟在课后回忆老师在课堂上所讲的内容,细划分类,抓住概念及其注释,串联前后知识点,形成一个完整的知识网络。
总之,高中数学的学习过程是一个“厚积薄发”的过程,我们要在以后的学习生活中加强对应用数学思维和创新思维的方法与能力的培养与训练,从长远出发,提高自己的学习能力。希望同学们能从中有所收获,改进自己的学习方法,提高自己的数学成绩!
有关数学新课程理念心得体会总结四
各位评委:
早上好
今天我说课的题目是《有理数》复习课,这节课所选用的教材为人教版义务教育课程标准七年级上册教科书。
<>
1、教材的地位和作用
本节教材是初中数学七年级上册第一章《有理数》的复习内容,是初中数学的重要内容之一。有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。一方面,数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。另一方面,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数式四则运算工具性内容。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。因此有理数在教材中具有承上启下的作用。
2、学情分析
学生在此之前已经学习了第一章有理数,对_有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:有理数概念和有理数运算,难点确定为:负数和有理数法则的理解和运用
<>
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
1、知识与技能目标:复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识。
2、过程与方法目标:培养学生综合运用知识解决问题的能力,提高学生对知识的整合能力和分析能力。
3、情感态度与价值目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。激发学生兴趣,感受数学之美。
<>
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。
3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。
学法指导
“授人以鱼,不如授人以渔”。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。
<>
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点。本节课的教学设计环节:
(1)创设情境,引入新知:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”,学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地掌握二次函数的基本知识,我设计了五个由浅入深的练习题,让每一个学生都能为下一步的探究做好准备。
(2)运用知识,体验成功:分层教学,让每一个学生获得成功,感受成功的喜悦。
知识深化,应用提高:引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。
归纳小结,形成结构:把“反馈——调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。
(3)发现问题,探求新知
设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第xxxx环节。
(5)强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1??例2??,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6)小结归纳,拓展深化
小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获、
(7)当堂检测对比反馈
(8)布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上是我对本节课的见解,不足之处敬请各位评委谅解!
有关数学新课程理念心得体会总结五
<>
本节知识是必修五第一章《解三角形》的第一节资料,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,并且解三角形和三角函数联系在高考当中也时常考一些解答题。所以,正弦定理和余弦定理的知识十分重要。
根据上述教材资料分析,研究到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:在创设的问题情境中,引导学生发现正弦定理的资料,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
本事目标:引导学生经过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维本事,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,经过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
教学重点:正弦定理的资料,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时确定解的个数。
<>
根据教材的资料和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究资料,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的本事线联系方法与技能使学生较易证明正弦定理,另外经过例题和练习来突破难点
<>
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、团体等多种解难释疑的尝试活动,将自我所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维本事,构成了实事求是的科学态度,增强了锲而不舍的求学精神。
<>
第一:创设情景,大概用2分钟
第二:实践探究,构成概念,大约用25分钟
第三:应用概念,拓展反思,大约用13分钟
(一)创设情境,布疑激趣
“兴趣是最好的教师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab长为1m,想修好这个零件,但他不明白ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮忙别人的热情和学习的兴趣,从而进入今日的学习课题。
(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。
2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。
3.让学生总结实验结果,得出猜想:
在三角形中,角与所对的边满足关系
这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。
(三)逻辑推理,证明猜想
1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生经过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明
(四)归纳总结,简单应用
1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.正弦定理的资料,讨论能够解决哪几类有关三角形的问题。
3.运用正弦定理求解本节课引入的三角形零件边长的问题。自我参与实际问题的解决,能激发学生知识后用于实际的价值观。
(五)讲解例题,巩固定理
1.例1。在△abc中,已知a=32°,b=81.8°,a=42.9cm.解三角形.
例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2.例2.在△abc中,已知a=20cm,b=28cm,a=40°,解三角形.
例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。
(六)课堂练习,提高巩固
1.在△abc中,已知下列条件,解三角形.
(1)a=45°,c=30°,c=10cm
(2)a=60°,b=45°,c=20cm
2.在△abc中,已知下列条件,解三角形.
(1)a=20cm,b=11cm,b=30°
(2)c=54cm,b=39cm,c=115°
学生板演,教师巡视,及时发现问题,并解答。
(七)小结反思,提高认识
经过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?
1.用向量证明了正弦定理,体现了数形结合的数学思想。
2.它表述了三角形的边与对角的正弦值的关系。
3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
(从实际问题出发,经过猜想、实验、归纳等思维方法,最终得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅仅收获着结论,并且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)
(八)任务后延,自主探究
如果已知一个三角形的两边及其夹角,要求第三边,怎样办?发现正弦定理不适用了,那么自然过渡到下一节资料,余弦定理。布置作业,预习下一节资料。
有关数学新课程理念心得体会总结六
本节课是学生在三年级学习过“分数的初步认识”的基础上,五年级再一次认识分数的完整意义。因此“分数的再认识”不是初步认识整体“1”,而是对整体“1”的再认识, 是在学生已经懂得整体“1”是“一个物体”、“一个计量单位”,或“由许多物体组成”的基础上进行教学的。但是学生对整体“1”的重要性认识不够深刻,所以本节的一个重要任务就是让学生在具体的情境中,通过操作活动,感受部分与整体的关系,体验到同样拿出整体“1”的几分之几,但是由于整体“1”不同,拿出的具体数量也不同。另外,还让学生根据整体“1”的几分之几所对应的数量,描述出整体“1”的大小。
1、联系学生的生活实际,在教学中,我创设了“拿粉笔”、“比一比”、“画一画”等多个情境,激发了学生提出问题,解决问题的欲望,使学生感受分数对应的整体“1”不同,分数所表示的部分的大小或具体数量也就不一样,让学生在具体的情境中感受、理解数学问题。
2、注重引导学生在生活中自己发现问题、自己讨论解决问题。如在“拿粉笔”的活动中,我引导学生仔细观察,并提出问题,然后再组织学生讨论解决,让学生在民主、和谐的氛围中充分合作开拓思维,提高了学生的合作探究的能力。
本节课,大多数的学生能提出问题,积极主动地参加讨论问题,争先恐后地抢答问题。然而也有一些问题是值得我继续思考的:分数的再认识,再认识的内容有两点: 1、在具体的情境中,进一步理解分数的意义。2、结合具体的情境,体会“整体”与“部分”的关系。
思考一:这里的“进一步”、“体会”两词就属于模糊词语,对于老师而言,比较难以把握,到底“进到哪一步”?“体会到哪一层”?
思考二:我们如何对学生进行评价:他是否进到那一步了,是否真正体会到了。评价标准是什么?仅仅是那几道题?教学过程中,拿粉笔环节进行的很顺畅,几乎异口同声说出“因为总枝数不同,它们的1/2当然不同”。是不是这样就算是体会了呢?特别在上了第二课时带分数、假分数后我发现有大部分学生其实并没有真正体会部分与整体的关系。记得在上第二课时要求把三张饼平均分给四个人时,大部分学生按课本上的分法说出两种不同的分法。但这时彭威同学站起来说: 三张饼,每张平均分成四份,就一共分成了十二份,每一个人就吃了其中的十二分之三,大家一听,觉得他说的也有道理。之前,大家的分法是:三张饼,每张平均分成四份,每个人都吃了一张饼的四分之一,一共吃了三个四分之一,也就是四分之三。显然,彭威的分数与之前大家的分数是不一样的,那究竟为何会出现这样不同的两个分数呢?其实,出现这样的局面,是因为这两个分数的总体,也就是单位一是不同的,一个是把一张饼看成整体,一个是把三张饼看成整体。虽然我知道这其中的原因,可学生们知道吗?思考后我知道,其实学生出现这样的情况是有原因的。因为在前一课时《分数的再认识》中,学生知道了两个不同的总体,即使它们取相同的几分之几,结果也是不同的。正是学生有这样的已有经验,才会出现分出的饼有四分之三和十二分之三的两种不同结果。也正是学生有这样的经验,我开始让学生讨论:四分之三和十二分之三的总体分别是谁?开始学生有点不了解,渐渐地他们明白,四分之三表示每个人吃了一张饼的四分之三。而十二分之三表示每个人吃了三张饼的十二分之三(也就三张饼的四分之一)。
为这类问题我们数学组的老师还争论了两天。我总觉得我们很多老师教知识也不能前后连贯。教的是五年级的内容好像三年级学得做法就不能用了。很多老师居然还认为把三张饼平均分给四个人,每个人的得到的饼不能用十二分之三表示。可见分数的再认识难度多大,要真正理解谈何容易。并不是照本宣科做到书上几个题目就算掌握了。其实分数的再认识是第二课时学带分数假分数的铺垫。学生只有充分理解了部分与整体的关系后才会理解例如四分之九这些假分数,否则学生用三年级学的分数的知识来理解这些假分数是想不通的。才会理解整体看的不同,(即单位”1”不同)可能写出的分数就不同。
有关数学新课程理念心得体会总结七
经过连续两年的高三教学工作后,我开始投入到高中数学新课程教学中。平时也研读教材,探讨过新环境下的高中数学教学,但是如何将所学理论应用到实践中,如何落实数学课堂教学实效性,调动广大学生学习数学的积极性,成为我平时数学教学中的一个课题。白板技术的应用,为攻克这一问题增添了催化剂,推动数学课堂逐渐走向动态的课堂。也是我对新课程理念下数学课堂教学的一次很好的反思。
<>
这节课存在很大的计算量,如果让学生在课堂进行计算,就会减少思维量,减少解题的数量。如果只做分析,不求解又达不到训练的目的,同时也失去了这一部分内容的特点。为了解决这一问题,我将常规、典型的习题留作学生课前预习题。实践表明,学生很重视这次展示,做得非常认真,达到了预期的目的。学生是学习的主体,学生可以自主完成的内容要大胆放手,让学生亲自解决,从而带来问题解决的成功感。
<>
“数学是思维的体操”。思维永远是由问题开始的,设计适当的问题可激发学生的探索欲望,牵引学生的思维处于活跃状态。要提高提问的有效性,有效提问是课堂对话的开端,它能引起学生的思维、兴趣的激发一堂有实效的数学课应让学生的思维得到广度,深度的发展。这节课是直线与椭圆位置关系的复习,但仅停留在这一层面,学生的思维开阔不起来。为了促进学生思维的纵深发展,我设计了让学生类比直线与椭圆位置关系探究直线与双曲线位置关系。学生通过探究即找到了共性的方法又发现了差异的所在。在解决椭圆中点弦问题时,让学生主动去比较曾做过的双曲线的中点弦的问题。只有让学生自己去体验,感受,发现知识的发生,发展的过程,领略数学知识的联系、丰富,且富于变化的一面,才有利于学生掌握数学知识,更有利于激发学生学习数学的热情,为学生树立数学发展过程的数学思想。
<>
以往数学教学一根粉笔讲到底,缺少生动性,很难让数学课堂动起来。如今白板技术的应用,能给学生提供数学动态的演示过程。在整合直线与椭圆位置关系时,我应用白板轻松的将直线动起来。让学生切身的体会到位置关系的变化,充分体现了数形结合思想。教师对问题的设计体现于问题的呈现方式。好的问题呈现方式对问题的求解,学生思维的拓展能起到事半功倍的作用。在探究直线与双曲线位置关系的判定时,我采用了连线题的形式,将直线方程与椭圆方程,直线方程与双曲线方程分别联立后消去y得到关于x的方程,让学生区分哪个是椭圆的,哪个是双曲线的。让学生发现不同,进一步探究产生不同的原因,再去探究直线与双曲线位置关系的判定方法。在探究“点差法”求中点弦问题应注意的事项时,我设计了“找不足”的问题。让学生找错,改错,最后应用几何画板演示轨迹,让学生切身经历发现,分析,解决的过程。学习始于疑问,通过适当的问题情境,引出需要研究的数学问题,然后通过观察,思考,猜想,探究等活动,引导学生发现问题,提出问题,通过亲身实践,主动思维,积极参与,经历不断地从具体到抽象,从特殊到一般的抽象概括活动来理解和掌握数学基础知识,打下坚实的数学基础。
动态的数学课堂教学,给学生创设了的思维、情感发展的空间。但本节课仍存在很多不足之处和需要改进的问题。教学中能关注到学生情感变化,但安慰,鼓励的语言没能跟上,在对学生进行评价时应要丰富自己的语言。应用电子技术的能力有待进一步熟练。在真正解放学生,让学生成为数学课堂的真正的主人上力度还不够。学生能总结的,能发现的,而在教学时无意中又抢了学生的角色。所以今后要进一步提高认识,在平时课堂上尽量多地放手让给学生去做、去活动、去完成,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识、老师的知识成为自己的知识。
有关数学新课程理念心得体会总结八
<>《1和许多》说课稿
大家好!我今天说课的题目是小班数学活动《1和许多》。下面我将从幼儿、教材、教法学法、活动目标、活动准备、活动过程及评价几个方面来阐述我对本次活动的理解和认识。
<>
本次活动的对象是3岁刚刚入园的孩子,我将这个年龄段孩子阅读的特点总结如下:
一是孩子特别喜欢按照顺序背数字,甚至可以背到10,这种行为表明这些孩子对这些数字特别感兴趣。
二是孩子还没有建立初步的量概念,例如:当孩子做自我介绍的时候总是习惯用食指、中指和无名指来表示三,有一次我换成了另外三个指头孩子不知道是什么意思。
所以我想通过活动,引导孩子初步感知“1”和“许多”这两个不同的量。
<>
我准备的资料是浙江教育出版社的“幼儿智慧活动课程”小班上册数学领域上的“1”和“许多”。 认识“1”和“许多”是认识量的基础也是感知集合和元素关系的基础,单个的数量“1”很容易理解和表示,“许多”是一个集合的概念,孩子不能感知集合这种抽象的概念,但是通过和“1”的对比后却能够很容易感知这两个量以及“许多”这个大集合是由一个一个元素组合而成的。
<>
活动过程中,我要运用提问法,图片展示法。
<>
活动中,幼儿主要运用操作法,观察法,讨论法。
<>
活动目标是教学活动的起点和归宿,对教育活动起导向作用。
(一)情感目标:通过游戏活动,培养幼儿对数学活动的兴趣。
(二)能力目标:能区别1和许多这两个不同的量
(三)知识目标:知道 许多是由一个一个1组成的。 三个目标相辅相成,又循序渐进。
<>
为了更好的服务于本次的活动目标和完成活动内容,我要做以下准备工作。
(一)经验准备:能听懂老师的指令。
(二)物质准备:
1、若干苹果图片是为了在第一个环节中孩子具体操作而准备的材料。
2、让孩子们观察图片,图片上是有很多的苹果,是为了
在第四个环节中帮助孩子感知很多是由一个一个组成的
3、课件是为了在第三个环节中帮助孩子通过三组图片的对比感知“1”的量和“许多”的量的区别。
<>
本次活动总体上共有四个环节。 第一个环节是引导幼儿自主操作,帮助孩子初步探索和感知一个苹果的含义。 第二个环节是引导通过观察ppt,感知“1”和“许多”的差异,并能够区别“1”和“许多”。 第三个环节是让孩子们感觉“1”的量和“许多”量之间的区别。 第四个环节是通过孩子们的观察,一个一个的数一数,感知“许多”是由“一个一个”组成的。
<>
本次活动将在生活中寻找“1”和“许多”都藏在了哪些地方?作为了活动的延伸有三个作用,第一是可以巩固对这两个量概念的理解,第二是帮助孩子建立数学的知识是可以在生活中寻找到的意识和观念。
数学新课程理念心得体会总结 数学新课表心得体会(八篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。