电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

2022数学学院见习心得体会简短(5篇)

来源:互联网作者:editor2024-02-011

当我们备受启迪时,常常可以将它们写成一篇心得体会,如此就可以提升我们写作能力了。我们想要好好写一篇心得体会,可是却无从下手吗?以下是我帮大家整理的最新心得体会范文大全,希望能够帮助到大家,我们一起来看一看吧。

2022数学学院见习心得体会简短一

数学是其他理科学科的基础,要想学好其他理科科目,先要学好数学。且数学在中考中占分比例很大,不像别的学科,数学是比较拉分的。接下来我先分享一下我数学考试的技巧。

考数学前,不要去钻难题。而是把之前作业测验中的错题全部看一遍确定是会的,做到不疏忽每一个细节。

考试开始前,大家都知道,有五分钟的时间可以看试卷。但我观察过,大部分同学在那五分钟间都是开始做前面的选择题,自以为可以节约时间做的更快。其实不然,我倒觉得那五分钟用来看最后三道大题比较好,先审一遍题。好让自己心里有个底。考前五分钟是不能动笔的,同学们做选择题时都用的心算,准确率远远不及笔算,因为这样许多同学会在基础题上失分。

还有就是心态要好,很多同学反映因为选择填空最后一题没解出来就犟在那里,有的人就算跳过了做到后面脑子里还念念不忘,对于后面的题目影响也是很大。我的建议是如果思考超过五分钟,就没必要再在这道题上花时间。考试时候最怕考生泄气消极,做题目的时候应该想我又解出了一道题目而不是我又有一题不会。

数学考试卷面一般以简单题和中难题为主,难题占的分值并不多,所以打牢基础,把自己会做的确保做对,不会做的尽量多写几步,这样才能出好成绩。很多同学拿到试卷会说:“这道题我是会的,就是粗心了。”同学们会以粗心为由来安慰自己,确实人都会粗心,但基本功扎实的人,出了错会立即发现,很少会粗心的犯错。

有同学会问:“面对图形非常复杂的综合题,不知如何下手怎么办。”面对这一现象我想说的是综合题总是有多个小问,一般是由易到难。而且小题之间有联系,就是说会用到上一小题的结论,这是大家所疏忽的。而且复杂的图形往往是许许多多的基本图形组成的,熟悉了基本图形复杂图形会不攻自破。还有就是做综合题要学会一项特别重要的技能:画图。因为大部分的几何题都是需要分类讨论的思想。

对于平时作业,难免会遇到不会的,在家的时间够充裕,有足够的时间思考,正因为有些人爱思考,有些人选择了放弃,日积月累才会形成差距吧。

在中考前,所有的考试都是为了查漏补缺,每张试卷都能找到你知识的漏洞,只要弥补好漏洞,那么这张试卷对你就是有意义的。反之,如果你花了同样多的时间却没有发现自己不会的地方,那么这么多时间都是被浪费的。

平时上课我觉得要发扬死皮赖脸的精神,只要有不清楚或是不会的都要去老师那请教。有的同学因为太爱面子不肯去导致漏洞越来越多。

还有一点做题时不要太追求速度。我有两个朋友,去年读高三,一个人试卷总是做的很快,而另一个人做的很慢,有时做完时刚好收卷。可是做的快的那个女生永远考不过做的慢的女生。最后那个做题仔细稳重的人去了复旦,而那个速度一向很快的人去了上海交大。

离中考还有最后的四十多天了,如何才能调整好最佳的状态迎接考试,就看同学你们了!

2022数学学院见习心得体会简短二

很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?

我的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。

我的建议是:“总结归纳”是将题目越做越少的最好办法。

同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。

我的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。

发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。我的建议是:“勤学”是基础,“好问”是关键。

考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。

我的建议是:把“做作业”当成考试,把“考试”当成做作业。

2022数学学院见习心得体会简短三

新一学期又到了,上学期虽然没什么好成绩,数学93,语文94.5,但也评到一个三好学生,我没什么优点,只有老实,诚实。

然而缺点一大堆,如:不爱看书,不认真听讲,胆小怕事,爱睡觉……,就是因为这些,我才会成绩下降。我非常害怕我会被父母责骂,被朋友无视我的存在。

所以我一定要在六年级阶段拼搏,我会努力地请父母支持我!我的计划如下:

1、老师上课认真听。

2、课堂作业按时按刻去完成。

3、家庭作业要认真,不忘记。

4、不懂问题下课问。

5、计算题要认真仔细。

6、作业字迹要工整。

7、数学书要先预习,上课听的更懂。

8、数学争取好成绩。

9、配合老师要积极。

10、作业不会勤思考,实在不行问老师。

做到以上这十点,成绩优先一定行!

我一定努力学习,新学期加油!

2022数学学院见习心得体会简短四

恰当地引入新知,展示知识的价值取向,有助于学生明确学习目的,激发学习兴趣;通过引入、创设情景,刺激学生的求知需要,调动学生积极的情感因素,引发学生的学习兴趣。

小学数学课堂教学中应如何引入新知?可用如下七法:

一、从数学本身发展的需要来引入新知

教学中,教师要善于从现有知识出发,展示新旧知识之间的矛盾,引起学生的认识冲突,让学生在需要中进入新知学习。

例如“分数初步认识”的教学,先让学生做等分除法,4个饼平均分给两个小朋友,每人几个?2个饼平均分给两个小朋友,每人几个?当学生列式解答说出算法后,老师提出:把一个饼平均分给两个小朋友,每人几个?怎么表示?在学生寻求解决问题的需要中,引入“分数”。

二、从知识的类比中引入新知

类比法是由旧知去获取新知的一种重要方法。小学数学中的很多知识是与已有知识进行类比而产生的。教学中,在引入这类知识时,教师要善于从新知的类比原型出发,引导学生去提炼原型的类比因素。在类比中萌发推出新知的思路。

例如,“三角形的面积计算公式”的教学,先引导学生复习正方形、长方形、平行四边形面积计算公式,再要求学生说出平行四边形面积计算公式,再要求学生说出平行四边形面积公式的推导过程,强化面积计算中的转化法。然后让学生思考:能否象寻求平行四边形的面积计算公式一样,通过割补(或拼接)把三角形的面积转化为我们已经学过的几何图形的面积来计算?学生不难由推导方法的类比而获得公式。

三、运用归纳法引入新知

在引入新知时,提供学生新知背景中的一些个别对象,让学生去观察、比较、分析、综合。诱使学生萌发猜想,引出规律。这样引入,体现了编者的意图,符合学生认知特点。小学数学中的定律、法则、性质等规律的教学常常沿着这种思路来引入。

例如:“加法结合律”的教学,先出示如下两组练习。

第一组第二组

(1)(8 27) 13(1)8 (27 13)

(2)85 17 83(2)85 (17 83)

(3)72 (28 57)(3)(72 28) 57

把全班同学分成甲乙两个比赛组,分别作第一、二组连加练习比赛。当乙组获胜甲组不服时,师生讨论:第一组算式到底能否象第二组算式那样进行简算?当学生发现,每组的第(1)题、(2)题、(3)题结果分别相等时,教师提出如下问题:结果相同的两个算式之间有什么相同点和不同点?进而提出:通过比较,你发现了什么?

四、在知识分类中引入新知

从上可知,在教学相比较而存在于某属概念之中的种概念时,常常先让学生对属概念进行分类,然后分别对各类知识进行比较、分析。在学生全面感知各概念的发生、发展和形成过程的基础上引入概念。这样引入背景突出,整体性强,学生思维连贯,认识自然。因而对所学的知识理解最深刻,知识结构最完整。

例如“质数、合数的概念”教学,这样引入:让学生求出1,2,6,7,9,11,14,各数的约数换引导学生按约数个数把上述各数分类(教师提示分类标准)→学生列举一些分属于各类的其它自然数→引导学生分析比较每一类中各数之间有什么共同点(都是自然数且约数个数相同),不同类别中的数之间有什么不同(约数个数不同),→比较中引出质数、合数概念。

五、从学生的生活经验中引入新知

儿童心理学研究表明:儿童学习新知总是建立在一定的知识经验之上。尤其是小学数学中那些相对独立、前后联系少、本质属性较隐蔽的知识的学习,更是依赖于儿童的生活经验。教学中,教师善于提供多种感性材料,丰富学生的生活经验,激发学生的记忆表象。从中提炼出新知“生长点”。让学生在观察、分析、比较中引入新知。

例如“圆的认识”的教学,学生认识“两定”即定点(圆心)、定长(半径)是重点,也是难点。一位老师这样引入:

让学生举出生活中的圆形物体(硬币、钟面、饼干、车轮……)→从中设疑:所列举的物体哪些一定要做成圆的?为什么车轮一定要做成圆的?(学生为难)→提供学生正、反面体验材料,国外为了训练自行车运动员,设计出前后轮均为椭圆的自行车(出示示意图)。假如你骑上这种自行车会有什么感觉(学生体验到:会产生上下颠簸。进一步分析颠簸原因是:车轴心到地面的高度随车轮转动而不断变动,即轴心到轮边各点线段长短不一)。骑上圆形车轮的自行车为什么平稳(轴心到车轮上的距离处处相等)。→在释疑中引入圆心、半径的概念。

六、在操作演示中引入新知

抽象的数学知识广泛地存在于客观事物之中。数学的这一特点,决定了数学教学中引入操作演示的可能和必要。教学中,充分利用现有条件,把新知的发生、发展过程寓于学生的操作或者教师的演示之中来引入新知,符合学生的认识心理特点,以及情感需要。

例如“三角形的认识”的教学,让学生说说日常生活中三角形实例→请学生用自备的3根小棒搭三角形(要求搭出各种形状的三角形),并说出搭的方法→让学生画三角形并说出画的过程→比较所画出的各种三角形的异同→在分析比较中引出三角形的本质属性。

七、在创设情景中引入新知

小学生的学习带有浓重的情绪色彩。数学教学中因数学知识抽象,情感因素隐蔽而容易使学生感到枯燥、单调。要克服这一不利因素,从新知引入起,教师要善于根据学生年龄特征,把知识发生的背景,置于一幕幕使学生喜爱、令学生惊奇的情景之中,从而先声夺人,引发学生兴趣,启发学生思维。

例如一个教师在教“求平均数应用题”时,这样来设计“引入”:

师:同学们喜欢唱歌,谁为大家唱首歌?(同学们兴致很高推选了一位同学唱歌)。

师:这位歌手唱得怎么样?怎样来衡量她的唱歌水平?(生:让评委来打分)对,老师请4个小朋友和老师一起担任评委,给这位歌手打个分数(4个小评委把打好的分数分别写在黑板上,老师也打了个分数)。

师:同学们看,5个评委意见一致吗?按谁的意见办?(有些学生说:听老师的。另一些同学说:不行,那么还要其它评委干什么?)

师:对,不能仅凭老师说了算。要解决这个问题,等学完“求平均数应用题”之后,大家就知道用什么办法来给这位歌手定分了。……

这里通过模拟电视上歌手大赛评委评分的情景,使学生兴致高涨,同时在情景中揭示了“求平均数”的必要性,使学生以渴求的心理进入新知的学习。

引入新知没有固定的模式。这里从小学数学知识的形成方式给出七种引入新知的方法,仅仅是一个示例,旨在通过示例,展示小学数学新知教学中新知引入的一般途径。具体应用中还要求教师根据教材特点、学生认识规律及年龄特征,精心设计,灵活运用。

2022数学学院见习心得体会简短五

学习目标

1.回顾在平面直角坐标系中刻画点的位置的方法.

2.能够建立适当的直角坐标系,解决数学问题.

学习过程

一、学前准备

1、通过直角坐标系,平面上的与(),曲线与建立了联系,实现了。

2、阅读p3思考得出在直角坐标系中解决实际问题的过程是:

二、新课导学

◆探究新知(预习教材p1~p4,找出疑惑之处)

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

问题3:(1).如何把平面内的点与有序实数对(x,y)建立联系?(2).平面直角坐标系中点和有序实数对(x,y)是怎样的关系?

问题4:如何研究曲线与方程间的关系?结合课本例子说明曲线与方程的关系?

问题5:如何刻画一个几何图形的位置?

需要设定一个参照系

(1)、数轴它使直线上任一点p都可以由惟一的实数x确定

(2)、平面直角坐标系:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定

(3)、空间直角坐标系:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定

(4)、抽象概括:在平面直角坐标系中,如果某曲线c上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:a.曲线c上的点坐标都是方程f(x,y)=0的解;b.以方程f(x,y)=0的解为坐标的点都在曲线c上。那么,方程f(x,y)=0叫作曲线c的方程,曲线c叫作方程f(x,y)=0的曲线。

问题6:如何建系?

根据几何特点选择适当的直角坐标系。

(1)如果图形有对称中心,可以选对称中心为坐标原点;

(2)如果图形有对称轴,可以选择对称轴为坐标轴;

(3)使图形上的特殊点尽可能多的在坐标轴上。

2022数学学院见习心得体会简短(5篇)

当我们备受启迪时,常常可以将它们写成一篇心得体会,如此就可以提升我们写作能力了。我们想要好好写一篇...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
0.0302s