数学竞赛心得体会总结 数学比赛心得(7篇)
当我们备受启迪时,常常可以将它们写成一篇心得体会,如此就可以提升我们写作能力了。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。
最新数学竞赛心得体会总结一
(一)还数学课堂安静
以前的公开课在我眼里是热闹有加,整堂课如雷贯耳的掌声、赞扬声、小组合作讨论声,游戏高兴地叫喊声,真的声声入耳,还有那变幻莫测能刺激视觉的课件,一个比一个美,让我们可望不可即。而这次的课堂已经有了很大的改变,去掉了很多浮躁、形式上的东西。课堂返璞归真,已经安静了很多,留给学生安静思考时间,回归数学课堂抽象性或逻辑性。课堂变成了一个师生共同“享受”知识能量,传递信息的空间,让我们真正体会到数学课堂教学的朴素与扎实。
(二)课堂教学体现数学味道
这次的课堂体现了数学应有的味道,具体表现在两个方面:一是这次讲课内容多样,不像以前公开课那样多讲几何知识,或讲简单数学认识。对于一些抽象代数知识是避之若骛。这次不仅讲一些比较抽象知识——如比、用字母表示数、有余数的除法、百分数的意义、中位数等。还讲了一些比较有难度的知识如可能性的大小、鸡兔同笼、莫比乌斯圈、邮政编码等。这在以前是不可想象的。二是重视数学语言表达,教师语言简洁精炼,言简意赅,没有多余的话,最大特点是培养学生用数学语言表达,注意学生语言的严谨性。
(三) 多媒体的大量运用
最后我简单地说一说有关多媒体的运用,老师们都知道,数学课堂上运用课件目的一方面是为了节省时间,二是直观形象展示给学生。这次的课件制作水平相当高,而且使用效果好,克服以前课件华而不实的现象,学生的专著力只在课件表面的画面上,没有起到突出教学重点,突破教学难点的作用,课件成了摆设。课件是教学的辅助手段,为教学服务,不能主次颠倒。
以上是我的感受。总而言之,课堂教学改革走到今天,已经由当初的羽翼末丰逐渐成熟起来,我们感到由衷的欣慰。最后,也祝愿老师们在自己的教学园地这块实验田里结出丰硕的果实。
最新数学竞赛心得体会总结二
我讲授的人民教育出版社的教科书第一章第4小节第二课时《有理数乘法》,课后我认真进行了课后反思,觉得成功的地方有以下几点:
(1)课前采用四个小计算复习乘法口诀起到承上启下的效果。
(2)采用小游戏中的数学道理设置疑问导入新课,让学生感到生活中处处有数学,让学生兴趣大增,迅速进入角色。
(3)问题设置环环相扣、层层递进,让不同的学生都有不同的收获。
(4)在整个过程中,师生互动良好,每一位同学都参与课堂教学,不同的学生在不同的层面上都有不同程度的提高。
(5)在小结部分让学生归纳本结四基,真正把四基落实在课堂中。
当然,课堂永远都是一个充满遗憾的地方,这堂课也不例外,主要有两点:
(1)对于小游戏反映的数学道理应该让学生充分发表意见,再找几个同学归纳就更好了。
(2)、在乘法分配律的应用中,出一道乘以负数的例题就更好了,这样小考题学生完成情况就更好了。
最新数学竞赛心得体会总结三
数学家名言
“我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”
----王菊珍
“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。” ----托尔斯泰
“数学的本质在於它的自由.”----康扥尔(cantor)
“在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.”----康扥尔(cantor)
”没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明.”----希尔伯特(hilbert)
“数学是无穷的科学”----赫尔曼外尔
“问题是数学的心脏”----
“只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡.”----hilbert
“数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.”----高斯
“时间是个常数,但对勤奋者来说,是个„变数‟。用„分‟来计算时间的人比用„小时‟来计算时间的人时间多59倍。”----雷巴柯夫
“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。”----华罗庚
“天才=1%的灵感 99%的血汗。”---- 爱迪生
“要利用时间,思考一下一天之中做了些什么,是„正号‟还是„负号‟,倘若是„ ‟,则进步;倘若是„-‟,就得吸取教训,采取措施。” ----季米特洛夫
“近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:a=x y z。并解释道:a代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。” ----爱因斯坦
“数学是无穷的科学.” ----赫尔曼外尔
“数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.数学是科学之王.” ----高斯
“在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.” ----康扥尔
“只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡.”
----希尔伯特
“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么.” ----毕达哥拉斯
“一门科学,只有当它成功地运用数学时,才能达到真正完善的地步.” ----马克思
“一个国家的科学水平可以用它消耗的数学来度量.” ----拉奥
“数学——科学不可动摇的基石,促进人类事业进步的丰富源泉。”----巴罗
“在奥林匹斯山上统治著的上帝,乃是永恒的数。”----雅可比
“如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存。”----尼采
“不懂几何者免进。”----柏拉图
“几何无王者之道!”----欧几里得
“数学家实际上是一个著迷者,不迷就没有数学。”----诺瓦利斯
“没有大胆的猜测,就做不出伟大的发现。”----牛顿
“数统治着宇宙。”----毕达哥拉斯
“数学,科学的女皇;数论,数学的女皇。”----高斯
“上帝创造了整数,所有其余的数都是人造的。”----克隆内克
“上帝是一位算术家” ----雅克比
“一个没有几分诗人气的数学家永远成不了一个完全的数学家。”----维尔斯特拉斯
“纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。”----怀德海
“可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。”----麦克斯韦
“数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。”----史密斯
“无限!再也没有其他问题如此深刻地打动过人类的心灵。”----希尔伯特
“发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。”----达尔文
“宇宙的伟大建筑是现在开始以纯数学家的面目出现了。”----京斯
“这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。”----a?n?怀德海
“给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。”----柯西
“纯数学是魔术家真正的魔杖。”----诺瓦列斯
“如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。”----柏拉图
“整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。”----伯克霍夫
“数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。”----a?埃博
“生命只为两件事,发展数学与教授数学” ----普尔森
“用心智的全部力量,来选择我们应遵循的道路。”----笛卡儿
“我不知道,世上人会怎样看我; 不过,我自己觉得,我只像一个在海滨玩耍的孩子,一会捡起块比较光滑的卵石,一会儿找到个美丽的贝壳; 而在我前面,真理的大海还完全没有发现。” ----牛顿
“我之所以比笛卡儿看得远些,是因为我站在巨人的肩上。” ----牛顿
“不亲自检查桥梁的每一部分的坚固性就不过桥的旅行者是不可能走远的。甚至在数学中有些事情也要冒险。”
----贺拉斯.兰姆
“前进吧,前进将使你产生信念。”----达朗贝尔
“读读欧拉,读读欧拉,他是我们大家的老师。” ----拉普拉斯
“如果我继承可观的财产,我在数学上可能没有多少价值了。”----拉格朗日
“我把数学看成是一件有意思的工作,而不是想为自己建立什么纪念碑。可以肯定地说,我对别人的工作比自己的更喜欢。我对自己的工作总是不满意。”----拉格朗日
“一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。”----拉格朗日
“看在上帝的份上,千万别放下工作!这是你最好的药物。”----达朗贝尔
“我的成功只依赖两条。一条是毫不动摇地坚持到底; 一条是用手把脑子里想出的图形一丝不差地制造出来。”
----蒙日
“天文科学的最大好处是消除由于忽视我们同自然的真正关系而造成的错误。因为社会秩序必须建立在这种关系之上,所以这类错误就更具灾难性。真理和正义是社会秩序永恒不变的基础。但愿我们摆脱这种危险的格言,说什么进行欺骗和奴役有时比保障他们的幸福更有用!各个时代的历史经验证明,谁破坏这些神圣的法则,必将遭到惩罚。”
----拉普拉斯
“有时候,你一开始未能得到一个最简单,最美妙的证明,但正是这样的证明才能深入到高等算术真理的奇妙联系中去。这是我们继续研究的动力,并且最能使我们有所发现。” ----高斯
“如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。” ----高斯
“人死了,但事业永存。” ----柯西
“精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。我也是慢慢学来的,而且还要继续不断的学习。” ----阿贝尔
“到底是大师的著作,不同凡响!”----伽罗瓦
“异常抽象的问题,必须讨论得异常清楚。” - ---笛卡儿
“我思故我在。”----笛卡儿
“我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。”----笛卡儿
”数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。”----笛卡儿
“直接向大师们而不是他们的学生学习。” ----阿贝尔
“挑选好一个确定得研究对象,锲而不舍。你可能永远达不到终点,但是一路上准可以发现一些有趣的东西。” ---克莱因
“我决不把我的作品看做是个人的私事,也不追求名誉和赞美。我只是为真理的进展竭尽所能。是我还是别的什么人,对我来说无关紧要,重要的是它更接近于真理。” ----维尔斯特拉斯
“思维的运动形式通常是这样的:有意识的研究-潜意识的活动-有意识的研究。”----庞加莱
“人生就是持续的斗争,如果我们偶尔享受到宁静,那是我们先辈顽强地进行了斗争。假使我们的精神,我们的警惕松懈片刻,我们将失去先辈为我们赢得的成果。” ----庞加莱
“如果我们想要预见数学的将来,适当的途径是研究这门学科的历史和现状。”----庞加莱
“我们必须知道,我们必将知道。” ----希尔伯特
“扔进冰水,由他们自己学会游泳,或者淹死。很多学生一直要到掌握了其他人做过的,与他们问题有关的一切,才肯试着靠自己去工作,结果是只有极少数人养成了独立工作的习惯。” ----e.t.贝尔
“一个人如果做了出色的数学工作,并想引起数学界的注意,这实在是容易不过的事情,不论这个人是如何位卑而且默默无闻,他只需做一件事:把他对结果的论述寄给 处于领导地位的权威就行了。”
----莫德尔
“数学家通常是先通过直觉来发现一个定理; 这个结果对于他首先是似然的,然后他再着手去制造一个证明。” ----哈代
“一个做学问的人,除了学习知识外,还要有“taste”, 这个词不太好翻译,有的译成品味,喜爱。一个人要有大的成就,就要有相当清楚的“taste。”----杨振宁
“如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。”----柯西
“数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。”----陈省身
“科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。”
---陈省身
“数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。”
----陈省身
“我们欣赏数学,我们需要数学。”----陈省身
“一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。”
----陈省身
“虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。”----欧拉
“因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。”----欧拉
“迟序之数,非出神怪,有形可检,有数可推。”----祖冲之
“事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。”----刘徽
“虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。”----莱布尼茨
“不发生作用的东西是不会存在的。”----莱布尼茨
“考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。”----莱布尼茨
“几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。”----西尔维斯特
“也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多。”----西尔维斯特
“一个没有几分诗人才能的数学家决不会成为一个完全的数学家。”----魏尔斯特拉斯
最新数学竞赛心得体会总结四
时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标平衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。这就需要学生对学习进行自我反思。新课程强调以创新精神和实践能力的培养为重点,倡导以“主动、探究、合作”为特征的学习方式。教学活动是师生双边的活动,它是以教材为中心,教师教的活动和学生学的活动的相互作用,使学生获取数学知识、技能和能力,发展学生思维品质,培养创新意识,并形成良好的学习习惯。而教育改革中教师是关键,学生是主体。同时,教师能力的提高及学生能力的提高,都是在实践的探究中逐步确立。由此可见,教师与学生要想发展,必须要将实践与探究融为一体,使之成为促进师生发展、能力不断提升的过程,而反思则是将二者有效结合。
中学生正处于思维的发展阶段,不可能一次性的把握数学活动的本质,例如,遇到问题如何解决,发现错误怎么办,学生把要学的东西自己去发现或创造出来,这就需要进行反思。而在具体学习中缺乏多次的反复思考、深入探讨,这就造成了他们在学习上“事倍功半”的结果。那么在教学中我们该如何培养学生的反思能力呢?
一、在解决问题中反思,掌握方法
解题是学习数学的必经之路,学生解决问题时,往往缺乏对解题过程的反思,没有对解题过程进行提炼和概括,只是为完成任务而解题,导致解题质量不高,效率低下。教师应积极引导学生整理思维过程,确定解题关键,回顾解题思路,概括解题方法,使解题的过程清晰、思维条理化、精确化和概括化。
二、在集体讨论中反思,形成概念
“活动是感知的源泉,是思维发展的基础”。每个人都以自己的经验为背景来建构对事物的理解,所以认识相对有限。学生通过集体讨论和交流,可以了解同伴的理解,有利于丰富自己的思考方法,反思自己的思考过程,增强迁移能力。概念形成的关键是重视意义建构过程,而不仅仅是单调记忆,所以要注重引导学生通过集体讨论、争辩,来促进个人反思,实现自我创新。
三、在回顾知识获取时反思,提炼思想
在教学活动中,我们教师比较注重创设情境,引导学生通过操作实践、合作探究,主动获取知识。其实,在实际学习过程中,学生总是根据问题的具体情景来决定解题方法,这种方法受具体情景制约的,如果不对它进行提炼、概括,那么它的适用范围就有局限,不易产生迁移。因此教师应该鼓励学生在获取知识后反思学习过程,引导他们在思维策略上回顾总结,分析具体解答中包含的数学基本方法,并对具体的方法进行再加工,从中提炼出应用范围广泛的数学思想。
四、在分析解题方法中反思,体验优势
学生在解题时往往满足于做出题目,而对自己的解题方法的优劣却从来不加评价,作业中经常出现解题过程单一、思路狭窄、解法陈旧、逻辑混乱、叙述冗长、主次不分等不足,这是学生思维过程缺乏灵活性、批判性的表现,也是学生的思维创造性水平不高的表现。因此,教师必须引导学生分析解题方法的优劣,优化解题过程,努力寻找解决问题的最佳方案。通过这一评价过程,开阔学生的视野,使学生的思维逐渐朝着多开端、灵活、精细和新颖的方向发展,在对问题本质的认识不断深化过程中提高学生的概括能力,以促使学生形成一个系统性强、相互联系的数学认知结构。
五、在寻找错误成因中反思,享受成功
学生在学习基础知识时往往不求甚解、粗心大意,忽视对结论的反思,满足于一知半解,这是造成作业错误的重要原因。结果常常出现不符合实际,数据出错等现象,特别是一些“隐性错误”发生频率更高。因此教师应当结合学生作业中出现的错误,精心设计教学情境,帮助学生从基本概念、基础知识的角度来剖析作业错误的原因,给学生提供一个对基础知识、基本概念重新理解的机会,使学生在纠正。
六、要求学生建立数学学习档案
学习档案包括一段时期内与学习有关的全部资料,可以是数学作业本、考试试卷、课堂笔记、作业改错记录、考后分析表等汇编集,也可以是数学杂志、报纸及其它课外书籍等收集来的材料、记录等,也可以是学生的自我小结、数学学习日记等其它学习作品。学习档案是学生制定学习目标和进行自我评价的重要参考。通过它,学生可以从纵向的角度来看待自己学习的进步,了解自己学习状况的发展趋势,看到自己的优势所在,有助于学生形成正确的自我认识,确定个人发展方向和促进自身的成熟。学生通过建立自己的学习档案,可以不断地回顾自己档案中的内容,并不断地改进它们,从而摸索出适合自己的学习方式。
总之,作为初中数学学科本身的严谨性和数学语言的特殊性,对于初中阶段学生而言,不可能一次性直接把握数学活动的本质,而是必须要经过多次反复思考、深入研究、自我调整,才能全面、准确地完成数学学习过程.。而作为老师,我们应该高度关注学生数学反思能力,培养学生的反思意识,促进学生思维品质的最优发展。只有这样,才能使学生实现自我学习,自我检验,自我发展。
最新数学竞赛心得体会总结五
初三第二学期,对学生来说他们面临着人生的第一次重要考试――中考、而对于数学这110分的学科我该如何在短时间内提高复习的效率和质量,是孩子们所关心的、我的具体工作计划如下:
1、重视课本,系统复习、初中数学基础包括基础知识和基本技能两方面、现中考仍以基础的为主,有些基础题是课本的原型或改造,后面的大题是教材题目的引伸、变形或组合,复习时应以课本为主、尤其课后的读一读,想一想,有些中考题就在此基础上延伸的,所以,在做题时注意方法的归纳和总结,做到举一反三、
2、充实基础,学会思考、中考时基础分很多,所以在应用基础知识时做到熟练、正确、迅速、上课要边听边悟,敢于质疑、
3、重视基础知识的理解和方法的学习、
基础知识既是初中所涉及的概念、公式、公理、定理等、掌握知识间的联系,要做到理清知识结构,形成整体知识,并能综合运用、例如:中考涉及的动点问题,既是方程、不等式与函数问题的结合,同时也涉及到几何中的相似三角形,比例推导等、还重视数学方法的考察、如:配方法、判别式等方法、
初中数学基本能力有运算能力、思维能力、空间想象能力以及体现数学与生产、生活相关学科相联系的能力等等、
1、提高综合运用数学知识解题的能力、要求学生必须把各章节的知识联系起来,并能综合运用,做到触类旁通、目前应根据自身的实际,有针对性地复习,查漏补缺做好知识归纳、解题方法地归纳、
2、狠抓重点内容,适当练习热点题型、几年来,初中的数学的方程、函数、直线型一直是中考的重点内容、方程思想、函数思想贯穿试卷始终、另外,开放题、探索题、阅读理解题、方案设计、动手操作等问题也是中考的热点题型,所以应重视这方面的学习与训练,以便适应这类题型、
首先,我们必须了解中考的有关的政策,避免走弯路,走错路、研读《中考说明》,看清范围,研究评分的标准,牢记每一个得分点、避免解题中出现“跳步”现象、
1、初三下学期刚开始,每一周末安排一次综合练习、让学生开始接触中考题型、题量,3月底后就每周一次综合模拟测试、
2、每天利用几分钟时间练习、初一初二时是作为速度练习,初三时用作专题(解方程、方程组、不等式、不等式组、分解因式、代数式等)练习,在后段专门训练中考模拟试题中的选择题、填空题、其特点是题量少,时间短,反馈快,对中考模拟试题中的选择题、填空题是反复做、
3、整合习题,把握重点难点、对中考题进行精选和整合,将重点放在第1―24题之间的基本重点部分、
一般来说,中考复习可安排三轮复习、第一轮,摸清初中数学内容的脉络,开展基础知识系统复习,按初中数学的知识体系,可以把初中内容归纳成八个单元:
①数与式{实数,整式,分式,二次根式}
②方程(组)与不等式(组){一次方程(组),一元一次不等式(组),一元二次方程,分式方程,简单二元二次方程(组)}
③函数与统计{一次函数,二次函数,反比例函数,统计}
④三角形
⑤四边形
⑥相似形
⑦解直角三角形
⑧圆、
中考试题中属于学生平时学习常见的“双基”类型题约占80%还多,要在这部分试题上保证得分,就必须结合教材,系统复习,对必须掌握的内容要心中有数,胸有成竹、在此我指导考试首先一定要配合你的老师进行复习,切忌走马观花,好高骛远,不要另行一套;其次,复习应配备适量的练习,习题的难度要加以控制,以中、低档为主,另外,对于较难的题,或者易错的题,应养成做标记的好习惯,以便在第二阶段进行再回头复习、注意:套题训练不易过早,参考资料应以单元为主,本阶段复习宜细不宜粗、
第二轮,针对热点,抓住弱点,开展难点知识专项复习、学数学的目的是为了用数学,近年来各地中考涌现出了大量的形式活跃、趣味有益、启迪智慧的好题目,在老师的指导下,对这些热点题型认真复习,专项突破、热点题型一般有:阅读理解型、开放探究型、实际应用型、几何代数综合型、研究性学习型等、
第三轮,锁定目标,备战中考,进行模拟训练、经过第一轮和第二轮的复习,学习的基础知识已基本过关,大约到五月中、下旬就应该是第三轮的.模拟训练,其目的就是查漏补缺和调整考试心理,便于以状态进入考场,建议考生在做好学校正常的模拟训练之余,使用各地中考试卷,设定标准时间,进行自我模拟测验、
初中数学总复习大致经过三轮,在第一轮复习中,往往存在以下问题:
1、复习无计划,效率低,体现在重点不准,详略不当,难度偏低,对课标和教材的上下限把握不准、
2、复习不扎实,漏洞多,体现在
1)高档题,难度太大,扔掉了大块的基础知识、
2)复习速度过快,对学生心中无数,做了夹生饭,返工来不及,不返工漏洞百出、
3)要求过松,对学生有要求无落实,大量的复习资料,只布置不批改;无作业、
3、解题不少,能力不高,表现在:
1)以题论题,不是以题论法,满足于解题后对一下答案,忽视解题规律的总结、
2)题目无序,没有循序渐进、
3)题目重复过多,造成时间精力浪费、
在第二轮复习中,应防止出现如下问题:
1、防止把第一轮复习机械重复
2、防止单纯就题论题,应以题论法
3、防止过多搞难题
在第三轮复习中,应防止出现下列问题:
1、过多做练习,以练代讲
2、以复习资料代替教练,不备课,课堂组织松散
3、只注重知识辅导,不进行心理训练、
措施:
让学生向错误学习,放手让学生自己去搞点讲评,自己动手建立错题档案、对于有价值的题目,让学生总结题目考查了哪些知识点,每个知识点是从哪个角度考查的,题目考查了哪些数学思想方法,本题有哪几种解题方法,解法是什么?当自己出错时,是知识上的错误还是方法上的错误,是解题过程的失误还是心理上的缺陷导致的失误、切实解决会而不对,对而不全,全而不美的问题、
1、不放弃每一个学生,不管是上新课阶段还是复习阶段,每一次测试都对不同的学生提出他们可望也可及不同的目标,在课堂上注重班级实际,注重学生实际,以基础为主,注重“双基”,不弄偏题、怪题,面向80%的学生,这样也有利于对班级的管理,也让他们感觉老师对他们关心、
2、对每一次测试都作出详细的分析,细到每一道题哪些学生得分,哪些学生失分及错误原因,这样在讲评时就能更有针对性,对错的少的题就个别讲解,有时还得进行分层讲评、
3、一模后对每位学生进行得分分析,哪些题是必得分部分,哪些题是尽可能得分部分,在复习中重点放在哪些知识和哪些题型上,进行分层推进,优秀学生重点训练第24、25、26题的中考压轴题,中等学生重点训练第17――23题,学困生重点训练选择题、填空题、方程和不等式、
最新数学竞赛心得体会总结六
在新课程的实施过程中,我们欣喜地看到传统的接受式教学模式已被生动活泼的数学活动所取代。课堂活起来了,学生动起来了:敢想、敢问、敢说、敢做、敢争论,充满着求知欲和表现欲。在“以学论教”的今天,结合一些具体案例,从学生的变化看课改,别有洞天。
学生已有的生活经验、活动经验以及原有的生活背景,是良好的课程资源。在“生活中的立体图形”这节课中,不同的学生依据不同的生活背景进行活动,自己抽象出图形,制作出纸质的立体图形。彼此间的交流,实现了他们对立体图形关键特性的理解和认识,大家共同分享发现和成功的快乐,共享彼此的资源。
在“代数式”这节课中,由上节课的一个习题引入,带领学生一起探究得出一个规律5n 2,由此引出代数式的概念。在举例时,刘老师指出,“其实,代数式不仅在数学中有用,而且在现实生活中也大量存在。下面,老师说几个事实,谁能用代数式表示出来。这些式子除了老师刚才说的事实外,还能表示其他的意思吗?”学生们开始活跃起来,一位男孩举起了手,“一本书p元,6p可以表示6本书价值多少钱”,受到启发,每个学生都在生活中找实例,大家从这节课中都能深深感受到“人人学有用的数学”的新理念,正如刘老师所说的,“代数式在生活中”。
在日常生活中,经常听人们议论ct技术、磁共振成像,但很少有人能将其中的道理讲清楚。然而,学习了七年级上册“截一个几何体”以后,几乎所有的学生都能体会现代医学的ct技术竟然和切萝卜类似。
在学生上网查询,精心设计、指导下,成功地进行了“我是小小设计师”的课堂活动:这节课是以七年级数学上册第207页25题的作业为课题内容设计的一节课,以正方形、圆、三角形、平行四边形设计一幅图,并说明你想表现什么。事先由老师将课题内容布置给学生。由两位学生作为这节课的主持人,其他学生将自己的作品展示出来,并说明自己的创意。最后,老师作为特约指导,对学生的几何图形图案设计及创意、发言等进行总结,学生再自己进行小结、反思。整节课学生体验了图形来自生活、服务于生活的现代数学观,较好地体现了学生主动探究、交流、学会学习的有效学习方式,同时这也是跨学科综合学习的一种尝试。
“统计图的选择”教学设计和教学中,要求学生以4人小组为单位,调查、了解生活中各行各业、各学科中应用的各种统计图,调查、收集你生活中最感兴趣的一件事情的有关数据,必须通过实际调查收集数据,保证数据来源的准确。学生或通过报刊、电视广播等媒体,或对他们感兴趣的问题展开调查采访或查阅资料,经历搜集数据的过程,搜集的统计图丰富多彩,内容涉及各行各业。学生从中能体会统计图在社会生活中的实际意义,培养善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识。
在教学《七巧板》中,教师事先让学生上网查询课件,得到了可exe文件,和电脑教师合作,放入学生的电脑网络,安排一节,让学生去拼七巧板,改变了过去单纯由教师讲,学生死记的教学方式。两个班学生兴奋投入了学生。
新教材改变了传统的教学大纲对教学内容的轻能力重知识的要求,出现了许多新的教育思想把教材的内容分解成一个一个的小步子,一会儿几何知识,一会儿代数知识,好比一台机器,把所有的零件放在学生的面前,作为教师就是要让学生自己去探究如何组装机器。教会学生学习的方法。通过半个多学期的教学实践探究,使我清楚地认识到,必须要改变以往的以教师为中心,学生机械模仿教师的解题过程,死记硬背,这种方法已在教台站不着脚。同时,新教材还有独特的一面,那就是紧密结合学生的生活实际,从学生的心理和年龄特点考虑:七年级的学生还很喜欢色彩鲜艳的图片,所以教材编排了很多想想做做、剪剪拼拼游戏中的数学,学学玩玩,玩玩学学的24点计算,火柴棒、排方桌等生活中的数学,使枯燥的数学变得有趣了,变的学生好容易理解了,这样不但激发了学生的学习兴趣,而且体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。
设计者和信息资源的采集者,好比“机器零件”供应商,要从讲台上的“独奏者”转变到后台的“伴奏者”。教师必须要认真地钻研教材,找准教材的重点与难点,处理好教材、学生、教师的关系。寻找相关数学资源、图片、实物模型,创造和平共处的学习环境,有利于培养学生用数学的眼光来看待现实生活,体会现实生活也离不开数学。增强学生学好数学的信心与决心。
如在教日历中的方程时,学生每人准备一张日历表,然后教师提出问题,小彬在假期中外出旅游一周,这一周各天日期之和是84,问 小彬几号回家?问题一出,学生们的情绪马上高涨起来,这时课堂热闹非凡,讨论的场面不言而喻,然后观察学生准备好的日历,找日历中规律,竖列中的数字关系,横列中的数字关系,紧接着玩日历中的数学游戏,学生情绪高涨,收到了良好的教学效果,再比如商品中的打折销售,对于学生来说,买卖服装是生活中最平常的事,但其中的数学知识学生知道的还不是很多,只要教师收集的资料准备真实有效,学生的会很感兴趣用数学的知识去解答这些问题,但在数学的教学中教师要时刻注重学生能力的培养,针对现在农村学生,阅读课外的读物还不是很多,若看到一些数据无法用数学语言来表达,教师在上课时尽量做到让平时不爱说话的学生发表意见,做到多鼓励,少批评,同学之间少指责,使他们不再沉默。
在教学中,教师注重采用小组合作交流,共同学习,但在此过程中,好的学生能积极讨论、发言、学到了很多知识,发展了他们的能力,但对于哪些调皮学生来说,讨论简直是一种放松。什么都没有学到,学生与学生之间的两极分化日趋严重,作为新教师十分头疼,如何解决呢?还有待探索和研究。
最新数学竞赛心得体会总结七
暑期是查漏补缺的黄金时期,也是想在学习上逆袭的最佳时间。特别是对于高二升高三的我,更应该很好的利用这个暑假,为高三的紧张复习状态做好充分的准备。为了让我高效利用这个暑假,下面总结了高二升高三的暑期数学学习计划。
从知识角度来看,高二的解析几何、数列是高考的重中之重(另一重点内容是函数与导数),高考题经常有解析与数列的综合题。因为刚学过,多数知识点还熟悉,要在此基础上提高到(或接近)高考要求,相对来说比较容易。有些学校在高三第一学期就开始做综合试卷,如果能掌握好高二知识,会做得更好,这对以后的学习有促进作用,能帮助我形成良性循环。
平时在校由于作业多,无暇静下来做些归纳总结工作,而这对能力的提高会有很大的帮助。总结可以按章节,也可以按知识点。比如对圆锥曲线一章可按如下进行:
1.基本概念:曲线和方程定义及应用、圆锥曲线的定义及标准方程、直线和圆锥曲线的位置关系等。
2.基本题型的常见解法、特殊解法,如求两圆相交弦所在直线的方程,若求交点,不仅计算繁而且还会出现运算错误,用曲线系方程则很简单。
3.易错问题剖析。
4.本章涉及哪些数学思想方法。对思想方法的归纳要通过具体例子来实现,比如中点弦问题,涉及弦长,则用韦达定理,不涉及弦长,则用点差法。
在某章节学得不太好,可以集中时间补一下。首先要理解基本概念,记住公式和定理,千万不要一边看公式一边做题目,这样效果不好,要通过做题记住公式。其次要做熟常见的题型,并掌握其变式,要注意解题方法的总结,做题不要追求多,而要追求解题质量,提高效率。第三要特别重视定义的运用,还有努力把会做的题做对,我丢分相当严重,平时都认为是粗心,其实不尽如此,是多方面原因造成的,应及早找出原因,尽快改正。
我做题只是做一些老师讲过或是会做的题目,这类题目多是巩固性的,反复操练没有太大必要。要能腾出时间去做一些相对比较新的题目,这些题不一定难,但是以前自己没见过的问题,可以多花些时间从各个不同的角度去思考,这里不仅关心结果,更关注过程,这样的心理体验是必须经历的,它有助于高三阶段综合能力的提高。
学校在放假前就发了高三的复习用书,要求学生在暑假做甚至要求做完。对重点中学中等以上水平的同学不会有太大困难,但对中等水平以下和普通中学的多数同学会有不同程度的困难。对此要根据自己的具体情况而定,实在做不出也不要勉强,那毕竟是高三第一轮的学习任务。有些同学做了,但上课时又认为自己会做了,不认真听课,最终效果不好。有些基础好的同学由于超前学习太多,以至于早早就进入状态,到高考时不一定处在最佳状态,这部分同学要注意调节学习节奏。暑假可做些思维容量大的开发性问题,它最终会使你的能力得到提高,对你以后无论做什么类型的题都会有帮助。
数学竞赛心得体会总结 数学比赛心得(7篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。