电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

圆柱相交心得体会实用 圆柱的体验(4篇)

来源:互联网作者:editor2024-02-011

我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。那么心得体会该怎么写?想必这让大家都很苦恼吧。下面是小编帮大家整理的优秀心得体会范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

有关圆柱相交心得体会实用一

一、导入

1、圆的半径是5cm,圆的周长是多少?面积呢?

2、长方形的面积的计算公式是:(说一说,做一做)

3、长方体和正方体的表面积怎么计算的?(小组交流汇报

4、那么圆柱的表面积该怎么计算?

二、新授

(一)1、出示圆柱实物,师生共同探讨“圆柱的表面积指的是什么?”圆柱的表面积=?(结论:圆柱的表面积=圆柱的侧面积 两个底面的面积)

2、圆柱的底面积你会计算吗?(圆形面积s=πr2)

3、圆柱的侧面积你会计算吗?

①圆柱的侧面是什么形状?(长方形)

②圆柱侧面(长方形)面积=长方形的面积=长×宽,

圆柱侧面(长方形)的长=?

圆柱侧面(长方形)的宽=?

③圆柱的侧面积=?

(组内观察交流讨论汇报说明理由)

4、小结:圆柱的表面=圆柱侧面积×圆柱的高

(二)一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要多少面料?(得数保留整十平方厘米)

①求需要多少面料,就是求帽子的……?

②厨师帽是由那几个面组成的?

(三)一个圆柱地面半径是2cm,高是4.5cm,求它的表面积。本题与上一例题有何不同?

三、练习(练习二)

四、总结

通过本课学习你有哪些收获?

五、知识拓展

1、制作一个底面直径是40cm圆柱形水桶,用掉了9420cm的铁皮,这个水桶有多高呢?

2、一座风动力磨坊,高 10m,底面直径 6m,现在要为这座磨坊粉刷涂料,粉刷1平方米需要涂料 2公斤,那么需要买多少公斤的涂料呢?

>

圆柱的表面积

圆柱的表面积=两个底面的面积 圆柱的侧面积

圆柱的侧面积=底面周长×圆柱的高

教学目标:

1、通过已知长方体、正方体的表面积迁移到圆柱的表面积。

2、在交流中让学生逐步理解圆柱表面积的含义,了解圆柱侧面积与表面积的关系。

3、圆柱表面积=两个底面(圆形)的面积 圆柱的侧面(长方形)面积,在推导过程中使学生们了解到圆柱侧面(长方形)的长等于底面的周长,侧面的宽就是圆柱的高,从而得出圆柱侧面积=底面周长×圆柱的高。

>

1、理解圆柱的表面积含义,推导计算圆柱表面积,并能正确计算圆柱的表面积。

2、灵活运用圆柱表面积公式,解决生活实际问题。

教具学具:实物展台、圆柱实物、学生自制圆柱模型、生活中的圆柱

预习要求:圆柱的表面积是由哪几部分组成的?怎样计算出圆柱的表面积呢?

>

在教学过程中师生共同探讨、研究,利用多媒体课件与学生实践操作相结合的方法,很好的使学生理解并掌握了圆柱的表面积的推导和实际应用,完成了本课的预设目标。在今后的教学过程中应该多增加一些实际圆柱物体的表面积的计算和应用,因为学习知识的目的就在于应用。

有关圆柱相交心得体会实用二

《数学课程标准》指出“数学教学要让学生经历知识的形成过程”;“通过义务教育阶段的学习,学生能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和其它学科学习中的问题,增加应用数学的意识”。不难发现新课标注重的不只是让学生掌握学习中的结论,更关注的是他们个性的体验,在学生主动参与、实践交流、合作探究中去经历知识形成的过程,通过不断地发现问题、提出问题、分析问题、解决问题,积累生活中的经验,培养应用数学的能力,体验数学的乐趣,感受数学在生活中的应用价值。为此,在本小节的教学中我着重做了以下几点:

>。

学习圆柱的体积我是这样创设情境:1、长方体、正方体的体积是

圆柱相交心得体会实用 圆柱的体验(4篇)

我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?