电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

大数据基地合作协议书 共建基地战略合作协议(九篇)

来源:互联网作者:editor2024-02-171

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

有关大数据基地合作协议书(推荐)一

1. 对接风控模型团队,参与模型技术设计、数据提取清洗、数据衍生变换、模型开发、模型验证评估到最终模型实施的项目全生命周期,解决不同场景下的风控业务问题,包含但不限于审批、贷中管理、催收和反欺诈等。;

2.了解结构化及非结构化数据挖掘方法,熟悉统计建模、机器学习等量化建模方法。

3.协助部门建立风险数据库,了解同行业最新模型及分析技术,结合业务现状进行模型优化;

4、完成领导交办的其他工作

技能:

1、熟悉scala、java、python语言

2、熟悉sql,关系型数据库(如:mysql、postgresql)和nosql(redis、mongodb)

3、熟悉各类数学算法,从数据中发现现有系统和算法的不足,提出改进的算法并推动实现

4、了解大数据hadoop、spark生态系统组件

5、良好的沟通、学习、团队协作能力

6、有统计学数学知识,海量数据处理、数据分析和挖掘项目经验优先

有关大数据基地合作协议书(推荐)二

职责

1.负责数据etl开发,优化etl流程设计;

2.负责数据质量问题的分析、跟进、解决,进行数据质量监测、校验和提升;

3.负责etl开发实施文档的编写;

4.负责梳理公司数据仓库/数据集市数据清单、数据映射关系,优化现有数据仓库模型;

5.完善和梳理数据指标体系,完成和维护数据字典的工作;

6.参与数据标准的制定、数据标准管理和数据安全管理工作;

7.参与公司大数据平台的建设,包括sugar报表或神策接口配置,用户画像标签体系的开发等

任职要求:

1.有shell或python脚本开发经验;

2.有传统数据库sql server和mysql,有存储过程编写能力;

3.熟悉hadoop生态相关技术并有相关实践经验,包括但不限于sqoop、hive、hbase、kylin等开发经验;

4.有kettle、azkaban或oozie工作流调度经验;

5.熟悉hive sql或flink sql的开发;

6.有数据仓库模型设计,有使用kafka flink streaming实时数据处理经验优先;

7.有sugar、神策或tableau使用经验,有用户画像或客户召回标签工作经验优先;

8.对数据挖掘和机器学习有所了解,包括常用的机器学习算法和数据建模过程的优先

有关大数据基地合作协议书(推荐)三

职责:

1、制定全渠道商品(新老品)的供需计划(年度-季度)

2、制定库存商品的销售计划,并对库存的消化进度进行管控

3、主导完成商品数据库的建立与持续完善

4、通过协助各部门的业务数据梳理,及时反映数据进展,为业务提升提供支持;

5、通过内部数据,平台数据分析,竞争对手数据,行业数据,社会趋势等的分析,为关联部门提供决策支持;

6、配合上级完成其他各类数据挖掘分析,并促进转化。

任职要求:

1、本科及以上学历,统计学、数学等相关专业,2年以上电商运营数据分析相关工作经验;

2、具备较强的数据分析和处理能力;

3、熟练使用办公软件,熟悉常用的数据库和大数据技术工具;

4、较强的逻辑思维能力,强烈的数据敏感度。

有关大数据基地合作协议书(推荐)四

高校教育大数据的分析挖掘与利用

摘 要,本文从高校教育大数据的汇聚融合与挖掘应用的角度,分析了如何运用教育大数据技术推动大学管理和人才培养的创新改革的思路和方法。首先,分析了教育大数据对高校现代化、精细化、规范化管理的4个价值,其次,给出了高等教育大数据技术平台的基本技术架构,第三,结合教育大数据实际应用,介绍了陕西省高等教育质量监管大数据中心、mooc中国、西安交通大学教学质量综合监控与评价三个典型案例,最后,提出了教育大数据分析挖掘中的3项基础性关键技术

关键词,高等教育,大数据,分析,挖掘

高校大数据分析挖掘至少有四个典型价值, 一是使得大学的管理更加精准高效,可以朝着智慧治理、分类管理、过程监控、趋势预测、风险预警的方向发展,真正实现基于大数据分析规律的精准治理,改变管理的模糊性, 二是可以更加准确地分析评价课堂教学的质量,过去我们对课堂、对老师的评价是定性和模糊的,而在大数据智慧课堂的模式下,可以真正实现采集样本的持久化,采集方式

的多元化,挖掘手段的多样化,分析技术多维度,通过这些方式可以提高课堂教学的质量, 三是使得教和学更加智慧,更加有效。对学生来说,老师可以了解学生学习的进展情况,发现学习兴趣点,以及对老师讲的哪些内容理解或者不理解,学习路径分析及课程推荐等等。对教师而言,不仅可以跨校跨地域分享他人的优秀课程,而且可以对学习者进行精准分类,进行个性化指导, 四是资源服务的个性化、精准化推荐与服务,学习绩效的个性化评价,以及个性化教学管理,个性化手机内容推送等等,这些功能将有效提升教与学的效率和质量

首先,我们对高等教育大数据技术平台有一个总体的顶层设计,如图1所示。这不仅是学校自己要有一个大数据的管理平台或者是数据中心,而且也是面向区域乃至全国的平台。教育部评估中心正在努力建立国家级高等教育教学质量监控大数据中心,陕西省也是这样考虑的。数据来自高校、教育管理部门以及行业、第三方、企业用人单位等等各方面采集的数据,该数据平台既有大学的业务数据、课程资源,也有政府部门的统计数据,还有学生网上学习的日志数据,用户产生的ugc数据,比如微信、微博、论坛等等的数据,基于大数据平台,开展面向学习者、面向高等教育管理机构、教师、高校等提供服务,并和教育部评估中心、主管部门等

进行数据交换与对接

显然,这样一个大数据平台必须是一个高性能的计算平台,没有这样的基础设施一切无从谈起,所以去年我们学校花了很大的力气做了两件事,一个是把校内二级单位原来小的集群计算进行整合,形成学校统一的高性能云计算平台,既面向校内的科学研究、人才培养提供服务,其实也可以为社会提供合作共建共享模式。目前,我们已建立了一种自我造血机制,四两拨千斤,以这个平台吸引更多的外部资源,努力扩展平台的性能和应用

目前,我校的高性能平台除了应用于材料、航天、能动、信息等大型科学计算之外,还开展了以下三项典型的大数据应用

案例1,陕西省高等教育质量监控与评估大数据应用

图2所示的是陕西省高等教育的整体架构。其数据基础是来自陕西省100多所高校的各种办学状态数据,有将近700个表格,以及陕西省教育厅各个职能部处的各种各样的管理数据,此外还有行业第三方提供的数据,包括招生、就业数据等等,这个平台上我们开展预测预警、查询在线分析、信息发布、统计决策等等,主要是为省级教育管理部门、评估机构、教育管理机构提供各种各样的办学状况的分析、统计、关联分析

建设全省高等教育大数据服务平台,实时采集各高校的办学状态数据,其根本目的是为了汇聚全省各高校的办学状态数据,打破数据孤岛,融合各方数据,实现横向关联比较、纵向历史分析,提供精准服务,支持科学决策

首先,该平台面向省教育厅提供了11项功能,从根本上解决了原来各处室间的数据孤岛的问题,实现了数据融合,横向关联,纵向融通,这个数据和各个高校是实时融通的,为省教育厅领导和职能部处提供了领导仪表盘、各职能处室的专项服务、81张高基表及年报年鉴表格的自动生成、绩效分析、招生就业及办学指标计算、教育评估等功能,从根本上解决了数据碎片化及其治理问题

其次,面向全省高校辅助决策,为高校领导以及校内各个职能部处提供了系列功能,包括办学情况综合分析和在线查询,专业结构分析比较,校级的教

大数据基地合作协议书 共建基地战略合作协议(九篇)

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?