数学解题心得体会总结 小学数学解题心得(8篇)
体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。我们想要好好写一篇心得体会,可是却无从下手吗?以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。
2022数学解题心得体会总结一
为了实施素质教育、面向全体学生,就必须做好学困生的转化工作。在学困生的转化工作中,班主任及科任老师除了倾注爱心,发现闪光点,因材施教,抓好反复教育外,还要注重学困生非智力因素与智力因素的的培养。为此,本次我选择了《农村小学数学学困生的转化》为研修主题。
为了充分发挥每一个学生的特长,不让一个学生掉队,尤其是充分调动学困生的积极性让他们从学习边缘地带能真正回归于课堂。通过转化,本班学困生能基本掌握学习的方法,能树立学习态度,对于掌握基本技能起到推动作用。引导学生,树立学生要学、肯学、苦学的思想,努力彻底地改变自己,实现自我价值。使本班学困生转化率达到90%。
《新课程标准》小学数学,《教师转化学困生的有效策略》,《小生学困生的转化,新课程教师》。
1、摸清本班学困生的基本信息、分析学困生其形成的原因,并且对每一个学困生制定切实可行的帮扶计划,建立学困生个人转化成长记录资料。2、具体实施帮扶转化措施:
1、课堂上有意识给学困生制造机会,让优生吃得饱,让学困生生吃得好。
2、课外组织学困生加以辅导训练。
3、发挥优生的优势,指名让他带一名学困生,介绍方法让学困生懂得怎样学,激起他们的学习兴趣。
4、对于学困生主要引导他们多学习,多重复,在熟练的基础上不断提高自己的能力,尤其是学习态度的转变和学习积极性的提高方面要花大力气。
5、积极发掘学困生身上的闪光点,做到多表扬少批评、多尊重不歧视、多鼓励不嘲笑,树立起学习的信心。在生活上、思想上关心他们。
6、进行家访,与家长取得联系,制定共同的教育促进转化目标。
3、完成相应帮扶转化的教育教学反思,即“我讲我的教育故事”和“我做我的教学设计”
通过本次校本研修,使自己的教育教学水平能得到进一步的提高,能撰写出高质量“小学数学学困生的转化”的教育叙事及“小学数学空间与图形教学生活化”的一节教学设计。
2022数学解题心得体会总结二
数学家名言
“我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”
----王菊珍
“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。” ----托尔斯泰
“数学的本质在於它的自由.”----康扥尔(cantor)
“在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.”----康扥尔(cantor)
”没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明.”----希尔伯特(hilbert)
“数学是无穷的科学”----赫尔曼外尔
“问题是数学的心脏”----
“只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡.”----hilbert
“数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.”----高斯
“时间是个常数,但对勤奋者来说,是个„变数‟。用„分‟来计算时间的人比用„小时‟来计算时间的人时间多59倍。”----雷巴柯夫
“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。”----华罗庚
“天才=1%的灵感 99%的血汗。”---- 爱迪生
“要利用时间,思考一下一天之中做了些什么,是„正号‟还是„负号‟,倘若是„ ‟,则进步;倘若是„-‟,就得吸取教训,采取措施。” ----季米特洛夫
“近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:a=x y z。并解释道:a代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。” ----爱因斯坦
“数学是无穷的科学.” ----赫尔曼外尔
“数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.数学是科学之王.” ----高斯
“在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.” ----康扥尔
“只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡.”
----希尔伯特
“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么.” ----毕达哥拉斯
“一门科学,只有当它成功地运用数学时,才能达到真正完善的地步.” ----马克思
“一个国家的科学水平可以用它消耗的数学来度量.” ----拉奥
“数学——科学不可动摇的基石,促进人类事业进步的丰富源泉。”----巴罗
“在奥林匹斯山上统治著的上帝,乃是永恒的数。”----雅可比
“如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存。”----尼采
“不懂几何者免进。”----柏拉图
“几何无王者之道!”----欧几里得
“数学家实际上是一个著迷者,不迷就没有数学。”----诺瓦利斯
“没有大胆的猜测,就做不出伟大的发现。”----牛顿
“数统治着宇宙。”----毕达哥拉斯
“数学,科学的女皇;数论,数学的女皇。”----高斯
“上帝创造了整数,所有其余的数都是人造的。”----克隆内克
“上帝是一位算术家” ----雅克比
“一个没有几分诗人气的数学家永远成不了一个完全的数学家。”----维尔斯特拉斯
“纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。”----怀德海
“可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。”----麦克斯韦
“数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。”----史密斯
“无限!再也没有其他问题如此深刻地打动过人类的心灵。”----希尔伯特
“发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。”----达尔文
“宇宙的伟大建筑是现在开始以纯数学家的面目出现了。”----京斯
“这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。”----a?n?怀德海
“给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。”----柯西
“纯数学是魔术家真正的魔杖。”----诺瓦列斯
“如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。”----柏拉图
“整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。”----伯克霍夫
“数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。”----a?埃博
“生命只为两件事,发展数学与教授数学” ----普尔森
“用心智的全部力量,来选择我们应遵循的道路。”----笛卡儿
“我不知道,世上人会怎样看我; 不过,我自己觉得,我只像一个在海滨玩耍的孩子,一会捡起块比较光滑的卵石,一会儿找到个美丽的贝壳; 而在我前面,真理的大海还完全没有发现。” ----牛顿
“我之所以比笛卡儿看得远些,是因为我站在巨人的肩上。” ----牛顿
“不亲自检查桥梁的每一部分的坚固性就不过桥的旅行者是不可能走远的。甚至在数学中有些事情也要冒险。”
----贺拉斯.兰姆
“前进吧,前进将使你产生信念。”----达朗贝尔
“读读欧拉,读读欧拉,他是我们大家的老师。” ----拉普拉斯
“如果我继承可观的财产,我在数学上可能没有多少价值了。”----拉格朗日
“我把数学看成是一件有意思的工作,而不是想为自己建立什么纪念碑。可以肯定地说,我对别人的工作比自己的更喜欢。我对自己的工作总是不满意。”----拉格朗日
“一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。”----拉格朗日
“看在上帝的份上,千万别放下工作!这是你最好的药物。”----达朗贝尔
“我的成功只依赖两条。一条是毫不动摇地坚持到底; 一条是用手把脑子里想出的图形一丝不差地制造出来。”
----蒙日
“天文科学的最大好处是消除由于忽视我们同自然的真正关系而造成的错误。因为社会秩序必须建立在这种关系之上,所以这类错误就更具灾难性。真理和正义是社会秩序永恒不变的基础。但愿我们摆脱这种危险的格言,说什么进行欺骗和奴役有时比保障他们的幸福更有用!各个时代的历史经验证明,谁破坏这些神圣的法则,必将遭到惩罚。”
----拉普拉斯
“有时候,你一开始未能得到一个最简单,最美妙的证明,但正是这样的证明才能深入到高等算术真理的奇妙联系中去。这是我们继续研究的动力,并且最能使我们有所发现。” ----高斯
“如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。” ----高斯
“人死了,但事业永存。” ----柯西
“精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。我也是慢慢学来的,而且还要继续不断的学习。” ----阿贝尔
“到底是大师的著作,不同凡响!”----伽罗瓦
“异常抽象的问题,必须讨论得异常清楚。” - ---笛卡儿
“我思故我在。”----笛卡儿
“我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。”----笛卡儿
”数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。”----笛卡儿
“直接向大师们而不是他们的学生学习。” ----阿贝尔
“挑选好一个确定得研究对象,锲而不舍。你可能永远达不到终点,但是一路上准可以发现一些有趣的东西。” ---克莱因
“我决不把我的作品看做是个人的私事,也不追求名誉和赞美。我只是为真理的进展竭尽所能。是我还是别的什么人,对我来说无关紧要,重要的是它更接近于真理。” ----维尔斯特拉斯
“思维的运动形式通常是这样的:有意识的研究-潜意识的活动-有意识的研究。”----庞加莱
“人生就是持续的斗争,如果我们偶尔享受到宁静,那是我们先辈顽强地进行了斗争。假使我们的精神,我们的警惕松懈片刻,我们将失去先辈为我们赢得的成果。” ----庞加莱
“如果我们想要预见数学的将来,适当的途径是研究这门学科的历史和现状。”----庞加莱
“我们必须知道,我们必将知道。” ----希尔伯特
“扔进冰水,由他们自己学会游泳,或者淹死。很多学生一直要到掌握了其他人做过的,与他们问题有关的一切,才肯试着靠自己去工作,结果是只有极少数人养成了独立工作的习惯。” ----e.t.贝尔
“一个人如果做了出色的数学工作,并想引起数学界的注意,这实在是容易不过的事情,不论这个人是如何位卑而且默默无闻,他只需做一件事:把他对结果的论述寄给 处于领导地位的权威就行了。”
----莫德尔
“数学家通常是先通过直觉来发现一个定理; 这个结果对于他首先是似然的,然后他再着手去制造一个证明。” ----哈代
“一个做学问的人,除了学习知识外,还要有“taste”, 这个词不太好翻译,有的译成品味,喜爱。一个人要有大的成就,就要有相当清楚的“taste。”----杨振宁
“如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。”----柯西
“数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。”----陈省身
“科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。”
---陈省身
“数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。”
----陈省身
“我们欣赏数学,我们需要数学。”----陈省身
“一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。”
----陈省身
“虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。”----欧拉
“因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。”----欧拉
“迟序之数,非出神怪,有形可检,有数可推。”----祖冲之
“事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。”----刘徽
“虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。”----莱布尼茨
“不发生作用的东西是不会存在的。”----莱布尼茨
“考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。”----莱布尼茨
“几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。”----西尔维斯特
“也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多。”----西尔维斯特
“一个没有几分诗人才能的数学家决不会成为一个完全的数学家。”----魏尔斯特拉斯
2022数学解题心得体会总结三
初三毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。下面就结合我校近几年来初三数学总复习教学,谈谈本届初三毕业班的复习计划。
一、第一轮复习(2月中旬~一模)
1、第一轮复习的形式
第一轮复习的目的是要“过三关”:过记忆关。必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。过基本方法关。如,待定系数法求二次函数解析式。过基本技能关。如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。基本宗旨:知识系统化,练习专题化,专题规律化。在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构,可将代数部分分为六个单元:实数、代数式、方程、不等式、函数、统计初步等;将几何部分分为六个单元:几何基本概念,相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆等。配套练习以《初中双基优化训练》为主,复习完每个单元进行一次单元测试,重视补缺工作。
2、第一轮复习应该注意的几个问题
必须扎扎实实地夯实基础。今年中考试题按难:中:易=1:2:7的比例,基础分占总分(150分)的70%,因此使每个学生对初中数学知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
中考有些基础题是课本上的原题或改造,必须深钻教材,绝不能脱离课本。
不搞题海战术,精讲精练,举一反三、触类旁通。“大练习量”是相对而言的,它不是盲目的大,也不是盲目的练。而是有针对性的、典型性、层次性、切中要害的强化练习。
注意气候。第一轮复习是冬、春两季,大家都知道,冬春季是学习的黄金季节,五月份之后,天气酷热,会一定程度影响学习。
定期检查学生完成的作业,及时反馈。教师对于作业、练习、测验中的问题,应采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等手办法进行反馈、矫正和强化,有利于大面积提高教学质量。
实际出发,面向全体学生,因材施教,即分层次开展教学工作,全面提高复习效率。课堂复习教学实行“低起点、多归纳、快反馈”的方法。
注重思想教育,不断激发他们学好数学的自信心,并创造条件,让学困生体验成功。(12)应注重对尖子的培养。在他们解题过程中,要求他们尽量走捷径、出奇招、有创意,注重逻辑关系,力求解题完整、完美,以提高中考优秀率。对于接受能力好的同学,课外适当开展兴趣小组,培养解题技巧,提高灵活度,使其冒“尖”。
二、第二轮复习(五月份)
1、第二轮复习的形式
如果说第一阶段是总复习的基础,是重点,侧重双基训练,那么第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。第二轮复习的时间相对集中,在一轮复习的基础上,进行拔高,适当增加难度;第二轮复习重点突出,主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。可进行专题复习,如“方程型综合问题”、“应用性的函数题”、“不等式应用题”、“统计类的应用题”、“几何综合问题”,、“探索性应用题”、“开放题”、“阅读理解题”、“方案设计”、“动手操作”等问题以便学生熟悉、适应这类题型。备用练习《中考红皮书》。
2、第二轮复习应该注意的几个问题
第二轮复习不再以节、章、单元为单位,而是以专题为单位。
专题的划分要合理。
专题的选择要准、安排时间要合理。专题选的准不准,主要取决于对教学大纲(以及课程标准)和中考题的研究。专题要有代表性,切忌面面俱到;专题要由针对性,围绕热点、难点、重点特别是中考必考内容选定专题;根据专题的特点安排时间,重要处要狠下功夫,不惜“浪费”时间,舍得投入精力。
注重解题后的反思。
以题代知识,由于第二轮复习的特殊性,学生在某种程度上远离了基础知识,会造成程度不同的知识遗忘现象,解决这个问题的最好办法就是以题代知识。
专题复习的适当拔高。专题复习要有一定的难度,这是第二轮复习的特点决定的,没有一定的难度,学生的能力是很难提高的,提高学生的能力,这是第二轮复习的任务。但要兼顾各种因素把握一个度。
专题复习的重点是揭示思维过程。不能加大学生的练习量,更不能把学生推进题海;不、能急于赶进度,在这里赶进度,是产生“糊涂阵”的主要原因。
注重集体备课,资源共享。
三、第三轮复习(六月份)
1、第三轮复习的形式
第三轮复习的形式是模拟中考的综合拉练,查漏补缺,这好比是一个建筑工程的验收阶段,考前练兵。研究历年的中考题,训练答题技巧、考场心态、临场发挥的能力等。备用的练习有《全国各地市模拟试题》、《历年安徽省中考题(_~_年)》。
2、第三轮复习应该注意的几个问题
模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,总体难度的控制等要切近中考题。 12
模拟题的设计要有梯度,立足中考又要高于中考。
批阅要及时,趁热打铁,切忌连考两份。
评分要狠。可得可不得的分不得,答案错了的题尽量不得分,让苛刻的评分教育学生,既然会就不要失分。
、给特殊的题加批语。某几个题只有个别学生出错,这样的题不能再占用课堂上的时间,个别学生的问题,就在试卷上以批语的形式给与讲解。
、详细统计边缘生的失分情况。这是课堂讲评内容的主要依据。因为,边缘生的学习情况既有代表性,又是提高班级成绩的关键,课堂上应该讲的是边缘生出错较集中的题,统计就是关键的环节。
、归纳学生知识的遗漏点。为查漏补缺积累素材。
处理好讲评与考试的关系。每份题一般是两节课时间考试,4节课时间讲评,也就是说,一份试卷一般需要6节课的讲评时间。
选准要讲的题,要少、要精、要有很强的针对性。选择的依据是边缘生的失分情况。一般有三分之一的边缘生出错的题课堂上才能讲。
(10)立足一个“透”字。一个题一旦决定要讲,有四个方面的工作必须做好,一是要讲透;二是要展开;三是要跟上足够量的跟踪练习题;四要以题代知识。切忌面面俱到式讲评。切忌蜻蜓点水式讲评,切忌就题论题式讲评。
(11)留给学生一定的纠错和消化时间。教师讲过的内容,学生要整理下来;教师没讲的自己解错的题要纠错;与之相关的基础知识要再记忆再巩固。教师要充分利用这段时间,解决个别学生的个别问题。
(12)适当的“解放”学生,特别是在时间安排上。经过一段时间的考、考、考,几乎所有的学生心身都会感到疲劳,如果把这种疲劳的状态带进中考考场,那肯定是个较差的结果。但要注意,解放不是放松,必须保证学生有个适度紧张的精神状态。实践证明,适度紧张是正常或者超常发挥的最佳状态。
(13)调节学生的生物钟。尽量把学习、思考的时间调整得与中考答卷时间相吻合.
2022数学解题心得体会总结四
我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。
一、在解题的方法规律处反思
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。
例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。
变式1 已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)
变式2 已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)
变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)
变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。
变式5 已知等腰三角形的腰长为x,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)
再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(ab为⊙o的直径,c为⊙o上的一点,ad和过c点的切线互相垂直,垂足为d。求证:ac平分∠dab)
通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二,在学生易错处反思
学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!
有这样一个曾刊载于《中小学数学》初中(教师)版20__年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?, a学生的答案是“9”,老师一看:错了!于是马上请b同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。
计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:
(1)请分别指出(—2)2,—22,—2-2,2-2的意义;
(2)请辨析下列各式:
① a2 a2=a4 ②a4÷a2=a4÷2=a2
③-a3 ·(-a)2 =(-a)3 2 =-a5
④(-a)0 ÷a3=0 ⑤(a-2)3·a=a-2 3 1=a2
解后笔者便引导学生进行反思小结.
(1)计算常出现哪些方面的错误? (2)出现这些错误的原因有哪些? (3)怎样克服这些错误呢? 同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。
三、在情感体验处反思
因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。
数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力。总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清“庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣,交往的快慰。
2022数学解题心得体会总结五
初二学生大多数是14、15岁的少年,处于人生长身体、长知识的阶段,他们好奇、热情、活泼、各方面都朝气蓬勃;但自制力差,注意力不集中……总之,初一学生处于半幼稚、半成熟阶段,掌握其规律教学,更应善于引导,使他们旺盛的精力,强烈的好奇化为强烈的求知欲望和认真学习的精神,变被动学习为主动自觉学习。就需要激发学生学习兴趣下面我谈谈这学期来我对数学教学中关于激发学生学习兴趣的体会:
本学期,我适应新时期教学工作的要求,从各方面严格要求自己,积极向老教师请教,结合本校的实际条件和学生的实际情况,开展激发学生学习兴趣的教学探索:
著名特级教师于漪说:“兴趣往往是学习的先导。有兴趣就会入迷;入迷,就钻得进去,学习就会有成效”。如何在实施素质教育的主阵地----课堂教学激发学生学习兴趣呢?下面谈谈我这学期在数学课堂上的几种做法。
一、“趣”从“史”中来
数学知识的艰辛探索积累过程中,伴有许多动人的史实故事,闪耀着古中外数学家刻苦钻研、献身科学的精神光芒。教师应熟读这些史料,并机智地应用到教学中去。例如复数概念的导入,我先向学生介绍数的概念的发展史:自然数的产生、正分数的产生、负数的产生等,并向学生说明,我国是最早使用分数运算法则和正、负数加法运算法则的国家。而后,又讲古希腊数学家希勒索斯因发现无理数而被沉舟身亡的悲壮史实,讲意大利数学家卡尔达诺在他的朋友塔利亚巧解方程的基础上发现了虚数,讲虚数由发现之初被视为“虚幻”“神秘”的数,到揭开神秘的面纱而被广泛应用的漫长曲折的历程。学生听完数学史实故事后,精神振奋,兴趣倍增。综合教材讲史,对知识的发生、发展,对培养学生探究精神与优良品德都有极好的感召力。
二、“趣”从“奇”中来
好奇心可以触发学生的求知动机,集中学生的注意力,刺激学生的思维。在教学中,教师可利用新奇的材料,创设悬念的情境,使学生带着疑念的心情,产生揭开知识奥秘的浓厚兴趣。例如,在讲授“等比数列的求和公式”前,我说:“同学们,我愿意在一个月内每天给你100元钱,但在这个月内,你必须第一天回扣给我1分钱,第二天给我回扣2分钱,……即后一天回扣给我的钱是前一天的2倍,有谁愿意?”该问题引起了学生的极大好奇心和兴趣,他们窃窃私语,出现了一种“心求通而未得,口欲言而不能”的情境,从而促使他们非常认真地投入到探求真知的学习中去。
三、“趣”从“言”中来
在教学中,教师若能巧妙地运用风趣幽默的语言来形象描述抽象疑难的数学问题,定能改变学生认为数学枯燥乏味的成见,使学生感到数学课乐趣无穷,耐人寻味。
例如,学生初学立体几何的一大障碍就是识图和画图,在平面内画立体图形的直观图时,锐角、钝角都可以看成直角,相交或平行的直线可以看成异面直线,这些视觉和想象的矛盾常使学生感到困惑。于是,教师在课堂上可对学生说:“人都是立体的,但照片上的人像却是平面的,你能在你的照片上摸到你的鼻子的感觉吗?”学生开怀大笑,从心理上缩短了与直观图的距离。再如,《集合》中数集符号的形象识记:“山峰山谷连一起”是自然数集n;“上下皆平平整整”是整数集合z;“做人要脚踏实地”是实数集r;“启唇摇舌说道理”是有理数集q;“人到中年大腹便便”是复数集c。经过这样的提炼,学生读起来兴趣盎然,记起来牢固实在。
四、“趣”从“趣”中来
数学的抽象性,若能精心策划设计,往往可以开发出回味无穷的趣味性。例如:题1:甲、乙、丙、丁、戌5名学生进行某种技能比赛,决出了第1到第5名的名次。甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军”;对乙说,“你当然不会是最差的”。从这个回答分析,5人的名次排列共可能有多少种不同情况?题2:设想你有三只箱子,这三只箱子分别装有2条黑领带、2条白领带、1条黑领带和1条白领带。箱子上挂有说明其内容的标签——黑黑,白白,黑白。但有人换了一下标签,所以现在每只箱子上的标签都是错误的。现在允许你从任意一只箱子里一次拿一条领带,但拿时不许看箱子里面,然后根据拿出的领带判断三只箱子的内容。你最少拿几次?从哪只箱子里拿?这些题目集知识性、趣味性于一体,学生思维活跃开阔,做起来十分投入。
五、“趣”从“用”中来
凡是理论联系实际的内容,学生都特别感兴趣,教学应尽量多联系实际,让学生感受到生活中处处有数学,处处用数学,有一种亲切感。如在讲等比数列的应用时,可举当前现实生活中的一个真实例子:建设银行受托办理某单位职工集资建房贷款。贷款期限为10年,年利率为5.22%,(月利率为0.435%)。贷款的偿还采用等额均还方式,即从贷款的第一个月起,每个月都归还银行同样数目的钱,10年还清贷款的本金与利息。如果贷款p万元,那么每个月应偿还多少钱呢?事实表明,联系生产、生活实际进行教学,学生津津有味,全神贯注,并且可以培养学生运用所学知识解决实际问题的能力。
六、“趣”从“美”中来
“哪里有数学,哪里就有美。”教学中,教师要努力挖掘教材中的美学因素,充分运用生动的语言、传神的手势、直观的教具、形象的媒体和精美的板书,为学生创设优美和谐的教学情境,引导学生用美的观点去感悟、理解和变通数学知识,让学生在审美的愉悦中,激发兴趣,丰富想象,启迪心智,陶冶情操,提高审美能力和创造能力。如,在“椭圆的定义和标准方程”一节的教学中,应向学生呈现椭圆图形的和谐、对称美,建系取点的结构美,标准方程的简洁美等。
七、“趣”从“爱”中来
“哪里有成功的教育,哪里就有爱的火焰在燃烧,炽热的情感在升华”。教学过程是一个认知因素与情感因素相互作用的过程,教学对象是有情感的学生,他们有着自己丰富的内心世界,需要得到教师更多的理解、信任和关爱。因此,数学教师在课堂上不仅要有精深的数学知识、严谨的教学态度、娴熟的演算技能和高超的解题方法,而且还要具有乐教爱生的崇高的思想感情。教师站在讲台上要用期待的目的注视着学生,用高昂的情绪感染着学生,用激动的语言鼓舞着学生,用艺术的方法引导学生,把知识变成活生生的思想和情感,把教学过程变成学生渴望探索真理的活动,使学生始终保持浓厚的学习数学的兴趣。实践证明,教师注重情感投入,将会给学生带来精神上的振奋,学习上的愉悦、思想上的共鸣,使教学产生事半功倍的效果。
经过一个学期的努力,一部分同学成绩有所提高,在本学期期中考试中我所任教两个班级也取得了较好的成绩。
2022数学解题心得体会总结六
寒假即将到来,你是否已经为自己做好了规划。充实地过好这个假期,会让你的考研复习有一个质的飞跃,相信领先教育,一定是一个正确的选择。以下是领先教育为20xx考研学子打造的高数复习计划。如果你能按照这个计划做,一定可以达到理想的效果。但是面对一个很实际的问题就是,学生们放假回家了,是否能充分利用好假期,是否真的可以按计划完成学习任务呢?因此领先在寒假期间推出一个“赢”计划之数学集训营,帮助大家以下面的计划作为大纲,结合大量的练习题,科学的测试及讲解,对高等数学进行知识分类,讲授解题技巧。此外,还会提前开始线性代数的导学。
复习高数书上册第一章,需要达到以下目标:
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
复习高数书上册第二章1-3节,需达到以下目标:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
复习高数书上册第二章 4-5节,第三章1-5节。
2022数学解题心得体会总结七
第一周(5月26日——30日)学习内容:
分数的意义,分数与除法的关系,分数大小的比较
周一,三,五收看空中课堂五年级数学(共3节)
第二周(6月2日——6日)学习内容:
真分数和假分数,假分数与带分数或整数的互化,分数的基本性质
周二,四收看空中课堂五年级数学(共2节)
第三周(6月9日——13日)学习内容:
约分,通分,分数和小数的互化
周一,三,五收看空中课堂五年级数学(共3节)分数与小数的互化,复习,第五单元同分母分数加减法
第四周(6月16日——20日)学习内容:
分数与小数的互化,复习
周二,四收看空中课堂五年级数学(共2节)
第五周(6月23日——27日)学习内容:
异分母分数加减法,分数加减混合运算,复习
周一,三,五收看空中课堂五年级数学(共3节)
第六周(6月30日——7月4日)学习内容:第七周(7月7日——7月11日)学习内容:
总复习第四,五单元,课本p127—p130
根据实际情况定时收看空中课堂,培养自己独立学习的习惯,形成适合自己的学习方法。
学习时不仅要关注结果,更要关注学习过程,注意思路和方法的学习。
遇到疑问要用心钻研,或打电话向老师和同学请教。
中央教育电视台cetv—3在每周一到周五上午9:10—9:40空中课堂有高年级数学课,同学们要安排时间及时收看。(具体安排以电视台预报为准)
第四单元分数的意义和性质是系统学习分数的重要单元,是学习分数四则运算和应用题的基础,务必认真学好。
1、理解分数的意义;分子,分母和分数单位的含义;分数与除法的关系;会比较分数的大小;认识真分数,假分数和带分数;掌握整数,带分数与假分数互化的方法。
2、理解和掌握分数的基本性质;能比较熟练的进行约分和通分。
3、理解分数和小数的关系,比较熟练的进行分小互化。
4、初步树立实践第一,矛盾转化的观点,培养良好的学习习惯。
首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。
复习高数书上册第一章,需要达到以下目标:
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
复习高数书上册第二章1-3节,需达到以下目标:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3.了解高阶导数的概念,会求简单函数的高阶导数。
本阶段主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:
1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
2.理解并会用罗尔(rolle)定理、拉格朗日(lagrange)中值定理和柯西(cauchy)中值定理。
3.掌握用洛必达法则求未定式极限的方法。
4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
本阶段主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。
复习高数书上册第四章 第1-3节。需达到以下目标:
1.理解原函数的概念,理解不定积分的概念。
2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。
本阶段主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意 c],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。
复习高数书上册第五章第1-3节。达到以下目标:
1.理解定积分的几何意义。
2.掌握定积分的性质及定积分中值定理。
3.掌握定积分换元积分法与定积分广义换元法。
本阶段的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。
复习高数书上册第五章第4节,第六章第2节。达到以下目标:
1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。
2.掌握定积分换元法与定积分广义换元法。会求分段函数的定积分。
3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。
本阶段主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。
2022数学解题心得体会总结八
数学期末复习是对本学期的知识进行归纳、总结,使学生到达巩固、熟练的程度。所以复习时应从学生已有的知识基础出发,抓住学生的薄弱环节,精选题例,突出基础,经过复习,让学生能举一反三,触类旁通。
本班学生的学风、班风一般,学习态度端正,班级整体成绩居年级中等水平。但有部分同学学习自觉性差,不能按时完成作业,上课经常人在心不在。所以在抓好基础知识的复习的同时,更要注重培养学生良好的学习习惯,更要加强后进生的辅导工作,使全体同学共同提高。
1.经过复习将小数四则运算加以系统整理,加深理解小数的意义、性质,小数乘法和除法的意义,熟练地进行小数乘法和除法的笔算和简单的口算,进一步提高整数、小数四则混合运算的本事。
2.会用字母表示数,表示常见的数量关系,初步理解方程的含义,会解简易方程。
3.在掌握用算术方法解应用题的基础上,会列方程解两、三步计算的应用题,能够根据应用题的具体情景灵活地选用算术解决和方程式的解法。
4.在复习过程中,能根据解决问题的需求,收集有用的信息,进行归纳、类比与猜测、发展初步的合情推理本事。能表达解决问题的过程并尝试解释所得的结果。体验数学与日常生活密切相关,认识许多实际问题能够借助数学方法来解决,并可借助数学语言来表述和交流。
第18、19周
1.单元复习,再次将本学期所授资料重新再理一遍,以求能熟练掌握。
2.分类复习,将基础知识、计算题、应用题等进行分类复习与测试,以求稳扎稳打。
3.综合复习,经过测试、分析讲解,进行期终模拟形式。
小数乘法、小数除法、观察物体、简易方程、多边形的面积、统计与可能性数学广角、总复习
重点:小数乘法、小数除法、简易方程、多边形的面积
难点:小数乘法、小数除法、简易方程
1.认真组织学生对学习资料和学习情景进行回顾与整理。
2.根据不一样领域资料的特点,采用灵活多样的复习形式。
3.重视不一样领域知识的融合,提高综合运用知识解决问题的本事。
4.采用多种练习形式,比如学生出题,抢答,抽查,学生互批等方法,提高学生学习兴趣。
5.做好提优补差工作,开展“一帮一、结对子”活动,提高后进生的成绩,使后进生提高的同时,帮忙后进生的学生也有所提高。
6.课堂上教会学生抓住每单元的知识要点,重点突破,加强解决问题本事的培养,并相机进行口算本事和估算本事的培养。
7.定期进行测试,提高学生的本事,做到讲练结合。
8.加强学生的习惯养成教育,教育学生在做题目的时候,先审清题意,然后再做,做题的过程中做到仔细、认真,做后要检查。
数学解题心得体会总结 小学数学解题心得(8篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。