电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

数学建模的心得体会ppt 数学建模的感想(6篇)

来源:互联网作者:editor2024-02-011

从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。那么我们写心得体会要注意的内容有什么呢?那么下面我就给大家讲一讲心得体会怎么写才比较好,我们一起来看一看吧。

主题数学建模的心得体会ppt一

学生的知识技能基础:学生在初二上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。在本章前面几节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义;

学生活动经验基础:在相关知识的学习过程中,学生已经经历了用计算器估算一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

教科书基于学生用估算的方法求解一元二次方程的基础之上,提出了本课的具体学习任务:用配方法解二次项系数为1且一次项系数为偶数的一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。而数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《配方法》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:

1、会用开方法解形如(x?m)2?n(n?0)的方程,理解配方法,会用配方法解二次项系数为1,一次项系数为偶数的一元二次方程;

2、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效模型,增强学生的数学应用意识和能力;

3、体会转化的数学思想方法;

4、能根据具体问题中的实际意义检验结果的合理性。

本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。

活动内容:1、如果一个数的平方等于4,则这个数是 ,若一个数的平方等于7,则这个数是 。一个正数有几个平方根,它们具有怎样的关系?

2、用字母表示完全平方公式。

3、用估算法求方程x2?4x?2?0的解?你喜欢这种方法吗?为什么?你能设法求出其精确解吗?

活动目的:以问题串的形式引导学生逐步深入地思考,通过前两个问题,引导学生复习开平方和完全平方公式,通过后一个问题的回答让学生进一步体会用估计法解一元二次方程较麻烦,激发学生的求知欲,为学生后面配方法的学习作好铺垫。

实际效果:第1和第2问选两三个学生口答,由于问题较简单,学生很快回答出来。第3问由学生独立练习,通过练习,学生既复习了估算法,同时又进一步体会到了估算法较麻烦,达到了激发学生探索新解法的目的。

活动内容:(1)工人师傅想在一块足够大的长方形铁皮上裁出一个面积为100cm2正方形,请你帮他想一想,这个正方形的边长应为 ;若它的面积为75cm2,则其边长应为 。(选1个同学口答)

(2)如果一个正方形的边长增加3cm后,它的面积变为64cm2,则原来的正方形的边长为 。若变化后的面积为48cm2呢?(小组合作交流)

(3)你会解下列一元二次方程吗?(独立练习)

x2?5; (x?2)2?5; x2?12x?36?0。

(4)上节课,我们研究梯子底端滑动的距离x(m)满足方程x2?12x?15?0,你能仿照上面几个方程的解题过程,求出x的精确解吗?你认为用这种方法解这个方程的困难在哪里?(合作交流)

活动目的:利用实际问题,让学生初步体会开方法在解一元二次方程中的应用,为后面学习配方法作好铺垫;培养学生善于观察分析、乐于探索研究的学习品质及与他人合作交流的意识。

实际效果:在复习了开方的基础上,学生很快口答出了第1问,为解决第二问做好了准备。第2问让学生合作解决,学生在交流如何求原来正方形的边长时,产生了不同的方法,有的学生直接开方先求出了新正方形的边,再减增加的边长,求出原来的正方形的边长;有的同学用了方程,设原正方形的边长为xcm,根据题意列出了一元二次方程(x?3)2?64;(x?3)2?48然后两边开方,根据实际情况求出了原来正方形的边长,这样,再一次经历了用一元二次方程解决实际问题的过程,并初步了解了开方法在一元二次方程中的简单应用。在第2问的基础上,学生很快解决了第3问。但学生在解决第4问时遇到了困难,他们发现等号的左端不是完全平方式,不能直接化成(x?m)2?n (n?0)的形式,因此大部分同学认为这个方程不能用开方法解,那么如何解决这样的方程问题呢?这就是我们本节课要来研究的问题(自然引出课题),为后面探索配方法埋好了伏笔。

活动内容1:做一做:(填空配成完全平方式,体会如何配方)

填上适当的数,使下列等式成立。(选4个学生口答)

x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2

x2?8x?____?(x?___)2 x2?4x?____?(x?___)2

问题:上面等式的左边常数项和一次项系数有什么关系?对于形如x2?ax的式子如何配成完全平方式?(小组合作交流)

活动目的:配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征,在此通过几个填空题,使学生能够用语言叙述并充分理解左边填的是“一次项系数一半的平方”,右边填的是“一次项系数的一半”,进一步复习巩固完全平方式中常数项与一次项系数的关系,为后面学习掌握配方法解一元二次方程做好充分的准备。

实际效果:由于在复习回顾时已经复习过完全平方式,所以大部分学生很快解决四个小填空题。通过小组的合作交流,学生发现要把形如x2?ax的式子a如何配成完全平方式,只要加上一次项系数一半的平方即加上()2即可。而2

且讲解中小组之间互相补充、互相竞争,气氛热烈,使如何配成完全平方式的方法更加透彻。事实上,通过对配方的感知的过程,学生都能用自己的语言归纳总结出配成完全平方式的方法,这就为下一环节“用配方法解一元二次方程”打好基础。由此也反映出学生善于观察分析的良好品质,而这种品质是在学生自觉行为中得到培养的,体现了学生良好的情感、态度、价值观。 活动内容2:解决例题

(1)解方程:x2 8x-9=0.(师生共同解决)

解:可以把常数项移到方程的右边,得

x2 8x=9

两边都加上(一次项系数8的一半的平方),得

x2 8x 42=9 42.

(x 4)2=25

开平方,得 x 4=±5,

即 x 4=5,或x 4=-5.

所以 x1=1, x2=-9.

(2)解决梯子底部滑动问题:x2?12x?15?0(仿照例1,学生独立解决) 解:移项得 x2 12x=15,

两边同时加上62得,x2 12x 62=15 36,即(x 6)2=51

两边开平方,得x 6=±51 所以:x1??6,x2??51?6,但因为x表示梯子底部滑动的距离所以x2??51?6 不合题意舍去。 答:梯子底部滑动了(51?6)米。

活动内容3:及时小结、整理思路

用这种方法解一元二次方程的思路是什么?其关键又是什么?(小组合作交流)

活动目的:通过对例1和例2的讲解,规范配方法解一元二次方程的过程,让学生充分理解掌握用配方法解一元二次方程的基本思路及关键是将方程转化成(x?m)2?n(n?0)形式,同时通过例2提醒学生注意:有的方程虽然有两个不同的解,但在处理实际问题时要根据实际意义检验结果的合理性,对结果进行取舍。由于此问题在情境引入时出现过,因此也达到前后呼应的目的。最后由问题“用这种方法解一元二次方程的思路是什么?”引出配方法的定义。

实际效果:学生经过前一环节对配方法的特点有了初步的认识,通过两个例题的处理,进一步完善对配方法基本思路的把握,是对配方法的学习由探求迈向实际应用的第一步。最后利用两个问题,通过小组的合作交流得出配方法的基本思路和解决问题的关键,结论的得出来源于学生在实例分析中的亲身感受,体现学生学习的主动性。

活动内容4、应用提高

例3:如图,在一块长和宽分别是16米和12米的长方形耕地上挖两条宽度相等的水渠,使剩余的耕地面积等于原来长方形面积的一半,试求水渠的宽度。(先独立思考,再小组合作交流)

活动目的:在前两个例题的基础上,通过例3进一步提高学生分析问题解决问题的能力,帮助学生熟练掌握配方法在实际问题中的应用,也为后续学习做好铺垫。实际效果:大部分学生通过独立思考,结合图形很快列出了方程,在交流过程中小组成员之间产生了分歧,有的同学认为,如果设水渠的宽为x米,则1?12?16;有的同学认为如果设水渠的宽为x21米,则方程应该是16?12?12x?16x?x2??12?16,并且给出了合理的解2方程应该是(16?x)(12?x)?

释;有的同学则认为,如果剩余的耕地面积等于原来的一半则意味着水渠的面积也等于原来长方形面积的一半,所以方程可以列为:12x?16x?x2?1?12?16。面对这些问题,组织学生解他们2所列出的几个方程,然后再让小组成员合作交流讨论,通过讨论,学生发现这三种方法都正确,并且指出第一种方法可以利用平移水渠,把分割成的四部分拼在一起,构成了一个较大的矩形(如下图),然后再利用矩形的面积公式列出方程,此种方法在解决此类问题时最简单。这样通过学生之间的争论、辩论提高了课堂效率,激发了学生学习数学的热情,达到了资源共享。

活动内容:解下列方程

(1)x2?10x?25?7;(2)x2?6x?1;(3)x(x?14)?0(4)x2?8x?9

活动目的:对本节知识进行巩固练习。

实际效果:此处留给学生充分的时间与空间进行独立练习,通过练习,学生基本都能用配方法解解二次项系数为1、一次项系数为偶数的一元二次方程,取得了较好的教学效果,加深了学生对“用配方法解简单一元二次方程”的理解。

第五环节:课堂小结

活动内容:师生互相交流、总结配方法解一元二次方程的基本思路和关键,以及在应用配方法时应注意的问题。

活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励)。

实际效果:学生畅所欲言谈自己的切身感受与实际收获,掌握了配方法的基本思路和过程。

第六环节:布置作业

课本50页习题2.3 1题、2题

1、 创造性地使用教材

教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。学生在初一、初二已经学过完全平方公式和如何对一个正数进行开方运算,而且普遍掌握较好,所以本节课从这两个方面入手,利用几个简单的实际问题逐步引入配方法。教学中将难点放在探索如何配方上,重点放在配方法的应用上。本节课老师安排了三个例题,通过前两个例题规范用配方法解一元二次方程的过程,帮助学生充分掌握用配方法解一元二次方程的技巧,同时本节课创造性地使用教材,把配方法(3)中的一个是设计方案问题改编成一个实际应用问题,让学生体会到了方程在实际问题中的应用,感受到了数学的实际价值。培养了学生分析问题,解决问题的能力。

2、 相信学生并为学生提供充分展示自己的机会

课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。

3、注意改进的方面

在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。

主题数学建模的心得体会ppt二

通过九年数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

本学期的教学内容共五章:

第22章:二次根式;第23章:一元二次方程;第24章:图形的相似;

第25章:解直角三角形;第26章:随机事件的概率。

重点:

1、要求学生掌握证明的基本要求和方法,学会推理论证;

2、探索证明的思路和方法,提倡证明的多样性。

难点:

1、引导学生探索、猜测、证明,体会证明的必要性;

2、在教学中渗透如归纳、类比、转化等数学思想。

(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

(2)抓住课堂45分钟。 严格按照教学计划,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。

(3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

1、认真学习钻研新课标,掌握教材。

2、认真备课,争取充分掌握学生动态。

3、认真上好每一堂课。

4、落实每一堂课后辅助,查漏补缺。

5、积极与其它老师沟通,加强教研教改,提高教学水平。

6、经常听取学生良好的合理化建议。

7、以“两头”带“中间”战略思想不变。

8、深化两极生的训导。

总结:以上是九年级上册数学教学计划,不足之处,请各位指正!

主题数学建模的心得体会ppt三

数学是神奇的世界,肯定有不少学生产生了浓厚的兴趣。为此,训练学生的思维活动是重中之重。数学思维活动在数学教学 课堂中探求问题的思考、推理、论证的过程等一系列数学活动都是数学教学中实施思维训练的理论依据之。 因此,趣味数学,一是能更好的促进学生数学思维能力的发展,符合课改的要求;二是填补了我们课改中的弱项。

1、尊重学生的主体地位和主体人格,培养学生自主性、主动性,引导学生在掌握数学思维成果的过程中学会学习、学会创造。

2、将数学知识寓于游戏之中,教师适当穿针引线,把单调的数学过程变为艺术性的游戏活动,让学生在游戏中学习在玩中收获。

3、课堂上围绕“趣”字,把数学知识容于活动中,使学生在好奇中,在追求答案的过程中提高自己的观察能力,想象能力,分析能力和逻辑推理能力。力求体现我们的 智慧秘诀:“做数学,玩数学,学数学”。

1、结合教材,精选小学数学的教学内容,以适应社会发展和进一步学习的需要。力求题材内容生活化,形式多样化,解题思路方程化,教学活动实践化。

2、教学内容的选编体现教与学的辨证统一。教学内容呈现以心理学的知识为基础,符合儿童认知性和连续性的统一,使数学知识和技能的掌握与儿童思维发展能力相一致。

3、教学内容形式生动活泼,符合学生年龄特点,赋予启发性,趣味性和全面性,可以扩大学生的学习数学的积极性。

4、每次数学思维训练课都有中心,有讨论有交流有准备。有阶段性总结和反思。

周次时间教学内容备注

一2.8—10用字母表示数

二2.13—17加法的简便计算

三2.20—24乘法运算定律

四2.27—3.2乘法分配律

五3.5—9角的认识妇女节

六3.12—16数字游戏植树节

七3.19—23角的度量

八3.26—30三角形的特征

九4.2—6三角形内角和

十4.9—13小数的意义

十一4.16—20小数的大小比较和性质

十二4.23—27小数点位置移动规律

十三4.30—5.4名数的改写劳动节

十四5.7—11小数的近似数

十五5.14—18综合应用:饮食与健康

十六5.21—25观察物体

十七5.28—6.1小数加减法儿童节

十八6.4—8小数加减混合运算

十九6.11—15统计

二十·二十一6.18—29期末复习

主题数学建模的心得体会ppt四

寒假即将到来,你是否已经为自己做好了规划。充实地过好这个假期,会让你的考研复习有一个质的飞跃,相信领先教育,一定是一个正确的选择。以下是领先教育为20xx考研学子打造的高数复习计划。如果你能按照这个计划做,一定可以达到理想的效果。但是面对一个很实际的问题就是,学生们放假回家了,是否能充分利用好假期,是否真的可以按计划完成学习任务呢?因此领先在寒假期间推出一个“赢”计划之数学集训营,帮助大家以下面的计划作为大纲,结合大量的练习题,科学的测试及讲解,对高等数学进行知识分类,讲授解题技巧。此外,还会提前开始线性代数的导学。

复习高数书上册第一章,需要达到以下目标:

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

2.了解函数的有界性、单调性、周期性和奇偶性.

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.

6.掌握极限的性质及四则运算法则.

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

复习高数书上册第二章1-3节,需达到以下目标:

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

3.了解高阶导数的概念,会求简单函数的高阶导数.

本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

复习高数书上册第二章 4-5节,第三章1-5节。

主题数学建模的心得体会ppt五

小学毕业总复习是小学数学教学的重要组成部分,是对学生全面而系统地巩固整个小学阶段所学的数学基础知识和基本技能,提高知识的掌握水平,进一步发展本事。所以,多年的毕业教学,我都十分重视小学毕业阶段的复习整理工作。而毕业总复习作为一种引导小学生对旧知识进行再学习的过程它应是一个有目的,有计划的学习活动过程。所以,在具体实施前必须制定出切实可行的计划,以增强复习的针对性,提高复习效率。

从小学毕业总复习在整个小学数学教学过程中所处的地位来看,它的任务概括为以下几点:

1、系统地整理知识。实践证明,学生对数学知识的掌握在很大程度上取决于复习中的系统整理,而小学毕业复习是对小学阶段所学知识构成一种网络结构。

2、全面巩固所学知识。毕业复习的本身是一种重新学习的过程,是对所学知识从掌握水平到达熟练掌握水平。

3、查漏补缺。结合我镇小学实际,大多采取小循环教学,学生在知识的理解和掌握程度上不可避免地存在某些问题。所以,毕业复习的再学习过程要弥补知识上掌握的缺陷。

4、进一步提高本事。进一步提高学生的计算、初步的逻辑思维、空间观念和解决实际问题的本事。让学生在复习中应充分体现从“学会”到“会学”的转化。

九义新教材在教材的编排体系上给我们复习创造了有利条件。教材在统计的初步知识后安排了总复习资料,以多个知识点构成六大知识结构体系,并加以练习。这是旧教材所无法相比的。在复习中,要充分利用教材,合理组织资料,适当渗透,拓展知识面。

由于复习是在原有基础上对已学过的资料进行再学习,所以,学生原有的学习情景直接制约着复习过程的安排。同时,也要根据本班实际复习对象和复习时间来确定复习过程和时间上的安排。结合我班实际,从4月26日进入总复习阶段,共计80课时,复习过程和时间安排大致如下:

(一)、数和数的运算(20课时)

这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。

1、系统地整理有关数的资料,建立概念体系,加强概念的理解(4课时),包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”等知识点。

2、沟通资料间的联系,促进整体感知(2课时),包括“分数、小数的性质”、“整除的概念比较”。

3、全面概念四则运算和计算方法,提高计算水平(6课时),包括“四则运算的意义和法则”、“四则混合运算”。

4、利用运算定律,掌握简便运算,提高计算效率(5课时),包括“运算定律和简便运算”。

5、精心设计练习,提高综合计算本事(3课时)。

(二)、代数的初步知识(10课时)

本节重点资料应放在掌握简易方程及比和比例的辨析。

1、构成系统知识、加强联系(3课时),包括“字母表示数”、“比和比例”、“正、反比例”等知识点。

2、抓解题训练,提高解方程和解比例的本事(4课时),包括“简易方程”、“解比例”。

3、辨析概念,加深理解(3课时),包括“比和比例”、“正比例和反比例”。

主题数学建模的心得体会ppt六

在教学中,我们常会碰到这样让人哭笑不得的作业:“一棵大树高10厘米。”“小明的身高120米。”……学生之所以出现这样的错误,主要原因在于没有对长度单位的实际大小形成鲜明的表象。长度单位这个概念,二年级的学生第一次接触,对于什么东西是厘米、米只有一个模糊的概念,学习以前可能是从未听说过,这样学习起来学生确实有点困难。这样的例子从另一个侧面提醒我们,对于这样的空间想象能力方面,学生还是比较薄弱,教学时应当重视计量单位观念的形成,并将这方面的要求落到实处,在教学长度单位厘米和米时,应按照学生的认知特点,还原数学生动活泼的建构过程,让学生用自己的活动建构对新知的理解,形成自己的体验。我觉得做到以下几点比较重要。

一、让学生在活动中体验——建立表象

1、体验1厘米的实际长度,可以通过下面的活动展开。

量一量。让学生选用不同的物品作标准测量课桌的长,进而产生疑问:“为什么量同一物体,而结果却不同?”使学生体验线段的长度是可以度量的,但需要相同的测量工具,认识到统一长度单位的必要性。看一看。通过观察直尺,直观感知1厘米的长度。让学生从直尺上找出1厘米,并且知道从刻度0到刻度1之间就是1厘米。再让学生找一找,还有哪两个数之间的长度也是1厘米,加强对1厘米的感受。画一画。让学生在练习纸上画出1厘米的线段,再次直观感知1厘米。比一比。请每个学生拿一个棱长是1厘米的小正方体,放在左手大拇指和食指之间,然后抽掉小正方体,左手手指不要动,看一看1厘米的长度,再比出1厘米,最后用直尺量一量或把小正方体塞进去验证一下,比的长度是不是大约1厘米。估一估。给学生提供长1厘米左右的学具,让学生利用已有的1厘米表象进行估测,再让学生用尺子量一量。找一找。从生活中找出长度大约是1厘米的物体。记一记。闭上眼睛想一想,1厘米有多长。

2、体验1米到底有多长,可以安排下面的活动。

看一看。直观感受1米的长度。量一量。量出哪些物体的长度大约是1米。比一比。两手把米尺拉直,手的位置不动,把米尺放掉,看看1米的长度。再把眼睛闭起来想想1米的长度,最后睁开眼睛,用手再次比画出1米的长度。排一排。排1米长的队伍,每两人间保持一脚的距离,看看大约排几个人。走一走。自然、均匀地走1米长的一段路,数数大约要走几步。

这样教学,把教材上“静止状态”的学习材料转化为“动态生成”的活动情境,有助于增强学生的学习兴趣,形成对新知的体验,促进对学习内容的理解。

二、在估测中认识——形成概念

1厘米、1米的概念比较抽象,学生容易遗忘。为了使学生更好地建立概念,可让学生尝试利用自己肢体上的某些大约长是1厘米、1米的部位或学习用品、生活用品中的1厘米、1米来帮助记忆。如学生大拇指的宽大约是1厘米;小指第二个关节的长大约是1厘米;二年级学生脚到胸口的距离大约是1米,记住这些“身体尺”,对建立1厘米、1米的长度概念或进行估测都大有益处。

估测是对事物的整体把握,是对事物数量的直觉判断。估测与数的认识、量的计量相配合,能加深学生对数的理解,增强灵活处理日常数量关系的能力。在教学中,我们应鼓励学生大胆估测,比较各自的估测结果,交流各自的估测策略,展示每个学生的独特想法,相互借鉴,不断提高学生的估测能力。

估测不是信口胡说。因此,估测一条线段长几厘米,一般不要让学生随便报出几厘米,而是要求他们想一想用什么工具、方法可以帮助估测。比如,引导学生通过用小手指尖到手腕的距离大约是10厘米来和这一条线段比较,从而得出更加合理的结果。教学中,教师除了注意挖掘学生身边的生活资源,如身体上的其他部位或周围的其他物品进行估计、测量,增加估测和实际测量的机会外,还要充分运用教材所提供的练习题。要把估测的结果与实际测量的结果进行比较,找出估测与实际测量的误差,培养学生初步的估测意识和估测能力。

三、在应用中拓展——理解概念

学生对长度单位的理解还应与实际测量紧密结合起来。测量是教学难点。如果教师直接向学生讲解测量的方法,学生的学习可能会轻松顺利,但考虑到一些学生已经会测量物体的长度,因此可尝试让学生自己动手测量,然后交流、讨论,总结测量的方法。用直尺量物体的长度,对学生来说容易出现的错误有:从尺的一端开始量,而没有用直尺上的0刻度线与所量物体的一端(起点)对齐;不会灵活使用直尺,不知道直尺上任何一个刻度都可以作为测量物体长度的起点。另外,在量的过程中,部分学生对直尺的控制不够自如。教师应发挥主导作用,充分讲解,悉心指导,让学生切实掌握测量方法。把尺的边与物体的边靠近着平行摆放,而尺的0刻度线要对齐物体边的一端。学生在进行操作性学习的过程中,多种感官参与学习活动,既可以丰富感性认识,又能加深对数学概念的理解。

小学生认识事物带有很大的形象性,只要提供较多的具体事例,使他们在思维过程中积累起丰富的感性材料,就可以帮助他们逐步学会抽象出数学概念的方法。基于这种状况,在数学教学中培养儿童观察力显得尤为重要。在培养儿童观察力的过程中,要引导学生不仅观察事物的表面现象,而且要透过现象观察事物的本质。要指导他们逐渐懂得看问题应该从什么角度看。同时,要教会他们特别注意进行分析、比较。

数学建模的心得体会ppt 数学建模的感想(6篇)

从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。那么我们写心...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?