比例电路心得体会实用 电路设计心得体会(四篇)
在平日里,心中难免会有一些新的想法,往往会写一篇心得体会,从而不断地丰富我们的思想。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会下面我给大家整理了一些心得体会范文,希望能够帮助到大家。
2022比例电路心得体会实用一
哪一组中的四个数可以组成比例?把组成的比例写出来。
(1)6、4、18和12 (2)4、5、6和8
第一位学生(金雁蓉)的回答是这样的:因为这四个数都是偶数,所以它们能组成比例。
第二位学生(毛逸宁)的回答是这样的:因为四个数中有一个是奇数,所以它们不能组成比例。
我的点评:四个数必须都是偶数才能组成比例吗?四个数中如果有一个是奇数就不能组成比例吗?同学们思考一下,你们同意他俩的观点吗?(暂时的沉默)
两位学生都是本班的聪明学生,却都局限在数的外在形式上,看它们是否为2的倍数,从奇数、偶数来思考这个问题,而没有从比例的基本性质来判断。看来学生的第一直觉与老师的预想(用比例的基本性质判断)不一致。而且经他们两个一说,还把部分学生的思维给牵向他们的思路去了。
此刻,是选择老师直接点拨(请大家先把最大的数乘以最小的数,再把中间两数相乘,看积是否相等,然后再作出判断。)还是继续等待学生有正确的发现?我选择了等待。果然,一会儿有学生提出了不同的想法“根据刚才学习的内容,我想到了把四个数中最大的数和最小的数相乘,中间两个数相乘,如果乘积相等,就能组成比例。我是用比例的基本性质来思考判断的。第(1)题6、4、18和12,把18×4=72,12×6=72,所以18×4=12×6,写出比例是18:6=12:4;第(2)题4、5、6和8,把4×8=32,5×6=30,所以4×8≠5×6,不能组成比例。”看来她理解很透彻,已经能学以致用了。
“很聪明,思路清晰,方法正确,讲的非常好,能把前后知识联系起来,依据充分!”
“我刚才也是这样想的!”部分学生附和。
“我认为我说的还是对的!”毛逸宁坚持己见。
“在这个题目中,你的判断刚巧符合正确结论,但推及其它题目呢?似乎行不通吧?”我提请他自我反思。
他依然有一脸不服气,在思考怎么有力反驳我。我当时为了教学进度没有停留作继续解释。
课后想想,我的做法有些不妥,一来其他学生也许会以为毛逸宁的方法也行得通呢,二来也会影响毛逸宁同学后面的听课效果,他卡壳在那里就听不下去了呀!这是一次失败的应对!如果当时我能给其一个明确的反例,不就可以消除他的错误观点了吗?比如我可以这样说:如果把6换成32/5或6.4,它们四个数不就可以组成比例了吗?(也许他还会反驳现在有了小数或分数了,而不是原来的整数了!)我还可以这样说:如果把5换成另一个奇数3,总符合你的三个偶数和一个奇数了吧,它们不照样可以组成比例?如果当时我能这样处理,课堂教学会更精彩,学生理解会更深刻,只是当时的处理不细腻、也不智慧!留下了遗憾。
我们常说应对生成要灵动,可关键时刻还是拿捏不住,在应对时有些措手不及,免不了做些无效劳动,日后有必要更为深入地了解学情,真正沉下去,做好充分的预设再进入课堂才是教学之上策。反思本节课,以后还需对学生的状况做好充分的预设及准备,使自身能及时应对课堂中出现的各种状况,生成更多精彩的课堂。
2022比例电路心得体会实用二
使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。2。培养学生概括能力和分析判断能力。3。培养学生用发展变化的观点来分析问题的能力。
重点:成正比例的量的特征及其断方法。
难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。
一、四顾旧知,
复习铺垫商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?
学生独立完成后
师提问:你们是怎样比较的?
生:我先求出每种袜子的单价,再进行比较。
师:你是根据哪个数量关系式进行计算的?
生:因为总价=单价×数量,所以单价=总价÷数量。
师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。
(板书:正比例)
二、引导探索,学习新知
1、教学
例1,学习正比例的意义。
(1)结合情境图,观察表中的数据,认识两种相关联的量。
师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?
学生自学并在组内交流。
全班交流。
(2)认识相关联的量。
明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。
2、计算表中的数据,理解正比例的意义。
(1)计算相应的总价与数量的比值,看看有什么规律。
学生计算后汇报:===…=3。5,每一组数据的比值一定。
(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)
(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。
(4)明确成正比例的量及正比例关系的意义。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:
3、列举并讨论成正比例的量。
(1)生活中还有哪些成正比例的量?
预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。
(2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?两种量中相对应的两个数的比值一定,这是关键。
4、认识正比例图象。
(课件出示例1的表格及正比例图象)
(1)观察表格和图象,你发现了什么?
(2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?无论怎样延长,得到的都是直线。
(3)从正比例图象中,你知道了什么?
生1:可以由一个量的值直接找到对应的另一个量的值。
生2:可以直观地看到成正比例的量的变化情况。
(4)利用正比例图象解决问题。
不计算,根据图象判断,如果买9 m彩带,总价是多少?49元能买多少米彩带?小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?
生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。
设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。
三、课堂练习:
1、p46“做一做”
2、练习九第1、3~7题
2022比例电路心得体会实用三
赵喜梅老师执教的是北师大版六年级下册《正比例》第19页——21页的内容。赵老师教学思路清晰,课堂上,让学生自己观察,自己比较分析,自己归纳,来发现正比例量的特征,并常试抽象概括正比例的意义,提高学生分析,判断、概括、推理能力。突破了难点,基本上达到了教学目标。下面,谈一下我对这节
课的个人看法:
老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的高度”还有“我们班的总人数,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。
这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习我想赵老师是达到了教学思想的很高境界。
“如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。
2022比例电路心得体会实用四
比例这部知识是在学习了比的知识上进行教学的,属于概念教学,为以后解比例,讲解正、反比例做准备的。学好这部分知识,不仅可以初步接触对应函数的思想,而且可以用来解决日常生活中一些具体的问题。
比例是在比的基础上讲解的,组成比例的两个比比值相等,由于比的知识是上学期学的,这么长的时间,学生的知识肯定有了一定的遗忘,所以在教学前,先带领学生回顾比的知识。什么叫比?关于比,我们学过哪些知识?什么是比值?怎样求比值?怎样化简比等等。唤醒孩子的旧知,既复习了以前的知识,又为本节课的学习提供了很好的帮助。
根据学生的认知规律,为了体现教师主导,学生主体,训练主线的指导思想,主要让学生在情境中产生问题“观察——计算——比较——概括——应用”的学习过程中掌握知识。为充分调动学生的学习积极性,促进学生有效学习。本课力求做到以下几点:
1、情境中激趣
一上课,就为学生提供四个实际情境图,并提出问题:
(1)、在哪些地方见到我们国家的国旗?
(2)、你们知道国旗的尺寸吗?
出示挂图,叙述每面国旗,分别出现在什么地方?并读出长和宽。比较四面国旗不同点和相同点?(大小不同,形状相同)分别列出每面国旗长与宽的比和求比值。最后观察比较。(比值相等)分析这些比的比值,看发现了什么?在学生充分感知的基础上,揭示比例的意义。在此同时还要使学生在学习过程中,理解比值相等时组成比例的核心,在判断两个比能不能组成比例时,关键看这两个比的比值是否相等。为强化理解在这时我安排了两种形式的练习:首先是判断。其次是组比例。最后通过小组讨论比与比例的联系与区别,并揭示数学知识不是孤立的,而它们之间都存在着密切的联系。让学生通过自己的分析、思考、概括出了较为简洁的数学概念,学生感受到成功的喜悦,参与课堂的主动性被充分调动。
创设这个情境有五方面的考虑:
一是使学生通过现实情境体会比例的应用;
二是“四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等”,由此引入比例意义的教学;
三是依据四面国旗长与宽可以组成多个比例式,为比例意义的教学提供较多的资源;
四是为以后学习图形的放大与缩小做铺垫;
五是有助于在教学中渗透爱国主义教育,注重了“数学化”和“生活化”的结合,让学生通过自己的分析、思考、概括出了较为简洁的数学概念,学生感受到成功的喜悦,参与课堂的主动性被充分调动。
2、变“教教材”为“用教材——拓宽教材”
教材是提供给学生学习内容的一个文本,我根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。这节课中在四面国旗的尺寸中找比组成比例,学生比较容易找到国旗长与宽的比,两两可以组成比例。同样国旗宽与长的比,两两也可以组成比例。另外每两面国旗的长之比与它们的宽之比也可以组成比例,课题中通过“你还能找出其它的比吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。
在练习中要根据给出的4个数据,组比例,隐含着相似三角形对应边成比例的性质。学生通过迁移比较,小组合作交流,多方验证,大家的思维从先前的不知所问到最后的豁然开朗,个个实实在在地当了一名小小的“数学家”,经历了这个愉快的学习过程,获得了成功的体验。
比例电路心得体会实用 电路设计心得体会(四篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。