电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

近似数心得体会总结 近似数的初步认识(五篇)

来源:互联网作者:editor2024-01-317

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。优质的心得体会该怎么样去写呢?那么下面我就给大家讲一讲心得体会怎么写才比较好,我们一起来看一看吧。

最新近似数心得体会总结

我的教学处理是这样的:首先提示我口袋上的钱大约是100元、我们学校学生总数约是310人,让学生猜钱的数量和学生的总数,在猜出结果基础上,告诉学生像102元、313人这些数,它们准确地反映了事物的真实情况,可以把它们叫准确数,而100、310接近真实情况的数,称为近似数。再让学生思考,我们生活中,你还遇到哪些数,它们是准确数,还是近似数?在学生说一些准确数和近似数之后。让生思考近似数有什么特点,又有什么作用?

课堂设计的板书如下:

近似数

准确数: 近似数:

102元100元

313人310人

41人 40人

9992人 10000人

近似数接近准确数,近似数一般是整十、

整百、整千、整万的数,所以较容易记忆。

在练习过程中,我发现学生存在几个问题:

1、学生没有真真切切地体会到近似数的特点与作用。比如说对于603米,有的学生的答案是约为601、602米。

您现在正在阅读的小学数学《近似数》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《近似数》教学反思2、学生没有很好地理解近似数可以有多个。

3、学生没有能正确地进行估数,比如练习洗衣机售价为1198元,约是多少元?这题,很多学生就回答约是20xx元。

4、对于较大的数,学生比较难理解接近的程度,比如说:9019人,学生一般估成3020人,或9010人;学生根本没有想到9000人。教师讲解后,我模糊地听到有学生说9000与9019相差了19,不能算接近了吧

为什么会出现如此多的问题呢?回顾我的教学过程,我发现对于近似数的特点,教授得并不透彻,而且好像没有正式地提到近似数可以有多个。所以如果上课时,我有意识地注意到这些细节,也许就可以避免出现第一和第二个问题。

第三和第四个问题出现的原因,我觉得可能是一样的,那就是学生还没有体验到较大的数在生活中的应用、无法准确地把握大数之间差距的程度究竟有多大,如:学生可能知道9019与9000相差19,却无法体会到19对于这两个数而言,这个差距是很小的。

如果重新教授本课,我该如何处理,才能很好地解决这些问题呢?也许通过学生交流、讨论,教师小结,可以很好地解决第一和第二个问题;而第三个问题,可以通过一百一百地从1200数到20xx,发现之间的差距有800之多,并顺势提醒,近似数跟准确数是接近的。但第四个问题,目前,我真想不出很好的办法来解决。

记得吴正宪老师教授三年级《估算》一课,吴老师的课堂设计很好地贴切了生活的需要,如生活中什么时候需要估数、估算?什么时候需要估大,什么时候需要估小等等。在吴老师的精心设计下,学生的学习效果是很好的。《近似数》一课的设计,是否也应该体现从生活中来,到生活中去的原则呢?设计的教学内容与环节,应该贴切生活中的需要呢?从而让学生在将知识应用于生活问题过程中,很好地理解数差距的程度是大,还是小呢?

路漫漫其修远兮,吾将上下而求索。

最新近似数心得体会总结

1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.

2.使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.

求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数.

教学难点

使学生能够区别求近似数与改写求准确数的方法.

一、铺垫孕伏.

1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)

986534 58741 31200

50047 398010 14870

2.下面的□里可以填上哪些数字?

32□645≈32万 47□05≈47万

学生填完后,说一说是怎么想的.

二、探究新知.

1.导入新课.

我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)

2.教学例1:求一个小数的近似数.

(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.

(2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?

教师提问:保留两位小数,要看哪一位?怎样取近似数?

使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.

学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?

使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0. 2.953保留整数就要看十分位,十分位上满5,向前一位进一得到3.

分组讨论:保留一位小数3.0十分位上的“0”能不能去掉?为什么?

教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……

(3)求下面小数的近似数.

3.781(保留一位小数)

0.0726(精确到百分位)

(4)讨论分析:3.0和3数值相等,它们表示精确的程度怎样?

①教师出示线路图:(投影出示)

②引导学生小组讨论交流:

使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.

(5)小结.

教师提出问题:求一个小数的近似数应注意什么?

引导学生讨论知道:求一个小数的近似数要注意两点:

①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是合还是人。

②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。

(6)分组合作学习,填表

在下表的空格里按照要求填出近似数

保留整数

保留一位小数

保留两位小数

保留三位小数

3.教学例2:1999年我国生产家用电风扇61581400台.把这个数改写成用“万台”作单位的数.

(1)教师提问:把61581400台改写成用“万台”作单位的数,应该用多少来除?缩小多少倍?小数点应该向哪个方向移动几位?

(根据学生回答教师板书:61581400台=6158.14万台)

教师总结说明:把较大数改写成用“万”作单位的数,只要在万位的右边,点上小数点,在数的后面加写“万”宇.

(2)做一做.

把248000改写成用“万”作单位的数.

4.教学例3:1999年我国生产水泥573000000吨.把这个数改写成用“亿吨”作单位的数.再保留一位小数.

(1)学生讨论:把一个数改写成用“亿吨”作单位的数,应该怎么办?

学生独立改写成573000000吨=5.73亿吨≈5.7亿吨,并说出改写的方法.

教师提问:如果要求保留一位小数怎么办?

启发学生自己得出≈1.4亿吨,并说出保留一位小数的方法.

教师总结说明:把较大数改写成用“亿”作单位的数,只要在亿位的右边,点上小数点,在数的后面加写“亿”字.如果小数位数比较多,可以根据需要保留前几位小数.

(2)“做一做”第2题.

把750000000改写成用“亿”作单位的数.

“做一做”第3题.

把34562800000改写成用“亿”作单位的数后,保留两位小数.

()

5.区别对比.

例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?(引导学生讨论)

三、巩固发展.

1.填空.

求一个小数的近似数,要根据需要用( )法保留小数数位.保留整数,表示精确到( )位;保留一位小数表示精确到( )位;保留两位小数表示精确到( )位……

2.填空.

近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了( )位,6表示精确到了( )位,所以6.0后面的“0”不能丢掉.

3.下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?

5.28 12.71 4.86 7.05

4.按照四舍五入法写出表中各小数的近似数.

保留整数

保留一位小数

保留两位小数

保留三位小数9.9564

0.9053

1.4639

5.(1)1999年北京市从事工程技术的人员共120100人,改写成用“万人”作单位的数.

(2)1999年我国出版图书7320000000册(张),改写成用“亿册(张)”作单位的数.

四、全课小结.

今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用“四合五入”法保留小数位数.要注意保留小数位数越多,精确程度越高.

五、布置作业.

1.把下面各小数四舍五入.

(1)精确到十分位:3.47 0.239 4.08

(2)精确到百分位:5.344 6.268 0.402

2.把下面各数改写成用“亿”作单位的数.

(1)保留一位小数:3672800000 648500000

(2)保留两位小数:4853900000 288160000

板书设计

求一个小数的近似数

例1 2.95保留二位小数,一位小数和整数,它的近似数各是多少?

2.953≈2.95

2.953≈3.0

2.953≈3

求一个小数的近似数要注意:

①要根据题目的要求取近似值.

②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.

例 2 61581400台=6158.14万台

在万位右边点上小数点,在数的后面加写万字.

例3 573000000吨=5.73亿吨 .5.7亿吨

在亿位右边点上小数点,在数的后面加写亿字.

数学教案-求一个小数的近似数

最新近似数心得体会总结

数学课程标准指出:“人人能获得良好的素质教育,不同的人在数学上得到不同的发展。”要使不同的学生在每一节数学课上有不同的收获,感受到数学的乐趣,从而激发学生学习的原动力。因此在本课程的研磨过程中,我发现以下这几个环节尤为必要:

求积的近似数的方法所用的方法同求一个小数的近似数的方法完全相同。因此,在教学本内容前,我组织学生做了适当的复习,复习工作主要有以下两大亮点:

(1)我首先考虑到学困生学习基础较弱,他们连小数点左右两边的数位都不了解,如何去进行四舍五入呢?因此我先在课件上出现一个点,引发学生猜想,最后让学生按顺序表述:当这个点表示小数点的时候,你能按顺序说出小数点的左边有哪些数位?右边又有哪些数位呢?学生回答时,可见中等生和学困生一时还反映不过来。最后通过几位同学的准确描述,在课件上显示数位顺序表,让学生一目了然。

(2)让学生明确保留整数和保留几位小数与精确到哪个数位之间的关系。在以往的教学中,我发现如果只是用保留整数和保留几位小数这样来表达求一个数的近似数的时候,学生当时的掌握效果就好了,但如果换个方式问:“把这个小数精确到十分位。”确有不少学生不能真正理解这句话的含义。这也说明了教师作为一名引导者,有义务引导学生从多方面的含义去理解和掌握知识,建立了保留整数和保留几位小数与精确到哪个数位之间的关系,对于学生的长远学习来说,是有利的。

不同形式的练习有助于学生从各个角度去理解知识,学会用适当的策略去解决问题。同时练习的难易程度也能在一定程度上让学习层次不同的学生得到有效的发展,增强学生的应用意识,激发学生积极学习数学的情感。

本节课在学完例6的时候,就让学生对积的近似数的求法进行总结,发现很多学生虽掌握了知识,但却无法用语言清晰地表述出来。因此通过巩固练习后,我让学生进行小组讨论和交流,学生在尝试总结的过程中互相学习,互相促进,第二次进行表达时,可见大部分学生能大胆而且准确地对积的近似数的求法进行总结。大大激发了学生成功的体验。

教无定法,贵在得法。作为一名一线教师,我们总是经常要面对不同的学生个体与群体,因此这就要求教师要随时根据学生的实际情况,设计出符合学生学情水平的教学流程,真正让学生学有所感,学有所获。

最新近似数心得体会总结

在准备《积的近似数》这节课中,我设计了以下这几个环节:

求积的近似数的方法同求一个小数的近似数的方法完全相同。因此,在教学本内容前,我组织学生做了适当的复习:

(1)我首先考虑到学困生学习基础较弱,他们可能忘记小数点左右两边的数位,这样如何去进行四舍五入呢?因此我先在课件上出现一个点,引发学生猜想,最后让学生按顺序表述:当这个点表示小数点的时候,你能按顺序说出小数点的左边有哪些数位?右边又有哪些数位吗?通过几位同学的准确描述,在课件上显示数位顺序表,让学生一目了然。

(2)让学生明确保留整数和保留几位小数与精确到哪个数位之间的关系。在以往的教学中,我发现如果只是用保留整数和保留几位小数这样来表达求一个数的近似数的时候,学生当时的掌握效果就好了,但如果换个方式问:“把这个小数精确到十分位。”确有不少学生不能真正理解这句话的含义。这也说明了教师作为一名引导者,有义务引导学生从多方面的含义去理解和掌握知识。建立了保留整数和保留几位小数与精确到哪个数位之间的关系,对于学生的长远学习来说是有利的。

不同形式的练习有助于学生从各个角度去理解知识,学会用适当的.策略去解决问题。同时练习的难易程度也能在一定程度上让学习层次不同的学生得到有效的发展,增强学生的应用意识,激发学生积极学习数学的情感。

本节课在学完例6的时候,就让学生对积的近似数的求法进行总结,发现很多学生虽掌握了知识,但却无法用语言清晰地表述出来。因此通过巩固练习后,我让学生进行小组讨论和交流,学生在尝试总结的过程中互相学习,互相促进。第二次进行表达时,可见大部分学生能大胆而且准确地对积的近似数的求法进行总结,大大激发了学生成功的体验。

教无定法,贵在得法。作为一名一线教师,我们总是经常要面对不同的学生个体与群体,因此这就要求教师要随时根据学生的实际情况,设计出符合学生学情水平的教学流程,真正让学生学有所感,学有所获。

最新近似数心得体会总结

(一)知识与技能

1、认识“四舍五入”法是截取积的近似数的一般方法。

2、掌握求小数乘法的积的近似数的方法。

(二)过程与方法

经历求小数乘法的积的近似数的过程,体验迁移的学习方法,培养学生应用数学知识解决实际问题的能力。

(三)情感态度与价值观

在学习活动中,激发学生的学习兴趣,感受知识源于生活。

会用“四舍五入”法截取积是小数的近似数。

能根据生活实际灵活截取积是小数的近似数。

(一)导入(复习导入)

师:在开始新课程之前,我们先回顾一下之前小数乘法学习了哪些内容?

生:小数成整数和小数成小数。

师:今天学习积的近似数。一说到求近似乎,想一想,我们四年级学过求什么数的近似数?

生:求小数的近似数。

师:还都记得怎么做吗?

生:记得(忘了)。

师:让我们先来热热身,看看谁掌握的最为牢固。

(ppt展示题目)

求下列小数的近似数,并说出你的思考过程。

5.3456.2680.402

要求:

1、(精确到十分位)

2、省略百分位后面的尾数。

通过做题,总结规律:

1、先确定保留的数位,在要保留的数位下划条横线;

2、将下一位上的数同“5”作比较,如果小于5,则舍掉;如果大于5或者等于5,则向前进1。(四舍五入法)

3、取近似数时,若末尾的“0”起到占位的作用,则不能去掉

(二)情景导入

例:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少亿个嗅觉细胞?(得数保留一位小数)

找同学读题两遍,让同学自己提取信息、列式,让同学到黑板上做题板书,并说出思考过程。

0.049×45=2.205≈2.2(亿个)竖式略

答:

此处强调两点,一个单位,一个答句不能丢。

(三)、经典练习

0.95×0.95(得数保留一位小数)

0.95×0.95=0.9025≈0.9(竖式略)

想一想,若此题改为保留两位小数,怎么做?(做在练习本上)

0.95×0.95=0.9025≈0.90(取近似数)

(四)、做一做(书上)p11现学现练,加深印象。

1、计算下面各题

0.8×0.9=0.72≈0.7(得数保留一位小数)

1.7×0.45=0.765≈0.77(得数保留两位小数)

2、一种大米的价格是每千克3.85元,买2.5kg应付多少钱?(联系实际生活,保留适当的小数位数)

延伸:实际生活中,常用的纸币面值为元、角,所以保留一位小数即可!

1、学生自己谈收获。

2、老师总结课程重点。

近似数心得体会总结 近似数的初步认识(五篇)

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?