近似数心得体会总结 近似数的初步认识(五篇)
当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。优质的心得体会该怎么样去写呢?那么下面我就给大家讲一讲心得体会怎么写才比较好,我们一起来看一看吧。
最新近似数心得体会总结一
我的教学处理是这样的:首先提示我口袋上的钱大约是100元、我们学校学生总数约是310人,让学生猜钱的数量和学生的总数,在猜出结果基础上,告诉学生像102元、313人这些数,它们准确地反映了事物的真实情况,可以把它们叫准确数,而100、310接近真实情况的数,称为近似数。再让学生思考,我们生活中,你还遇到哪些数,它们是准确数,还是近似数?在学生说一些准确数和近似数之后。让生思考近似数有什么特点,又有什么作用?
课堂设计的板书如下:
近似数
准确数: 近似数:
102元100元
313人310人
41人 40人
9992人 10000人
近似数接近准确数,近似数一般是整十、
整百、整千、整万的数,所以较容易记忆。
在练习过程中,我发现学生存在几个问题:
1、学生没有真真切切地体会到近似数的特点与作用。比如说对于603米,有的学生的答案是约为601、602米。
您现在正在阅读的小学数学《近似数》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《近似数》教学反思2、学生没有很好地理解近似数可以有多个。
3、学生没有能正确地进行估数,比如练习洗衣机售价为1198元,约是多少元?这题,很多学生就回答约是20xx元。
4、对于较大的数,学生比较难理解接近的程度,比如说:9019人,学生一般估成3020人,或9010人;学生根本没有想到9000人。教师讲解后,我模糊地听到有学生说9000与9019相差了19,不能算接近了吧
为什么会出现如此多的问题呢?回顾我的教学过程,我发现对于近似数的特点,教授得并不透彻,而且好像没有正式地提到近似数可以有多个。所以如果上课时,我有意识地注意到这些细节,也许就可以避免出现第一和第二个问题。
第三和第四个问题出现的原因,我觉得可能是一样的,那就是学生还没有体验到较大的数在生活中的应用、无法准确地把握大数之间差距的程度究竟有多大,如:学生可能知道9019与9000相差19,却无法体会到19对于这两个数而言,这个差距是很小的。
如果重新教授本课,我该如何处理,才能很好地解决这些问题呢?也许通过学生交流、讨论,教师小结,可以很好地解决第一和第二个问题;而第三个问题,可以通过一百一百地从1200数到20xx,发现之间的差距有800之多,并顺势提醒,近似数跟准确数是接近的。但第四个问题,目前,我真想不出很好的办法来解决。
记得吴正宪老师教授三年级《估算》一课,吴老师的课堂设计很好地贴切了生活的需要,如生活中什么时候需要估数、估算?什么时候需要估大,什么时候需要估小等等。在吴老师的精心设计下,学生的学习效果是很好的。《近似数》一课的设计,是否也应该体现从生活中来,到生活中去的原则呢?设计的教学内容与环节,应该贴切生活中的需要呢?从而让学生在将知识应用于生活问题过程中,很好地理解数差距的程度是大,还是小呢?
路漫漫其修远兮,吾将上下而求索。
最新近似数心得体会总结二
1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.
2.使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.
求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数.
教学难点
使学生能够区别求近似数与改写求准确数的方法.
一、铺垫孕伏.
1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)
986534 58741 31200
50047 398010 14870
2.下面的□里可以填上哪些数字?
32□645≈32万 47□05≈47万
学生填完后,说一说是怎么想的.
二、探究新知.
1.导入新课.
我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)
2.教学例1:求一个小数的近似数.
(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.
(2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?
教师提问:保留两位小数,要看哪一位?怎样取近似数?
使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.
学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?
使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0. 2.953保留整数就要看十分位,十分位上满5
近似数心得体会总结 近似数的初步认识(五篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。