电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

数学概论心得体会精选 数学思想概论读后感(8篇)

来源:互联网作者:editor2024-02-011

在平日里,心中难免会有一些新的想法,往往会写一篇心得体会,从而不断地丰富我们的思想。那么心得体会该怎么写?想必这让大家都很苦恼吧。下面我给大家整理了一些心得体会范文,希望能够帮助到大家。

2022数学概论心得体会精选一

1、培养和提高学生学习数学的兴趣

我在教学中,主要以鼓励为主,如一年级的小朋友,很常见的问题是计算的速度慢和正确率低。而这两个问题对孩子的数学学习影响最大,也最容易打击孩子的信心。利用数字卡片、算式条、速算本来对孩子进行训练,提高孩子的口算潜力。如果孩子上课时能第一个算出结果,那肯定是一件很光荣的事,会激发孩子的学习热情。但是,计算训练比较枯燥,我还用星级方式进行鼓励,比如三十题正确二十五算3星,积累星星能够换奖品、兑红旗等。数学教学务必从转变学生的学习态度、学习情感入手,使学生由机械、被动学习转变为创造、主动学习。

2、每个孩子都是优秀的,好孩子是夸出来的

孩子与孩子之间存在着差异,也可能有的孩子在学习成绩上不如别的孩子那么优秀,同时也可能学习起来缺乏自信,调皮捣蛋,与老师对抗等等,这些都需要我们对孩子付出更多的耐心和爱心。一个孩子生活在鼓励之中,他就能学会自信;一个孩子生活在认可之中,他就能学会自爱。有时我们一个真诚的微笑,一句热情的表扬,都能够在孩子身上转化为无穷的动力。因此,我们必须要精心呵护每一颗完美而脆弱的心灵。当我们的爱注入孩子心田时,我们的爱就会转化为孩子对知识和世界的热爱,从而促进孩子良性发展。

3、信任,是孩子成长的营养品

在课堂上,老师与学生之间,也同样需要信任。

心理学家认为,追求信任,这是一种用心的心态,是每个正常人的普遍心理,也是一个人奋发进取、用心向上、实现自我价值的内驱力。信任的心理机制对儿童良好心理品质的构成具有用心的鼓励作用。

作为一名教师,很重要的一点就是做到公平的对待每一个学生。我觉得每一个学生都有自己的特长,我们不能单纯地以成绩好坏来划分好生和差生。因此,对待学生我都一视同仁。在日常工作中,我还注意发掘每个学生身上的闪光点,帮他们树立自信,促进学生的全面发展。

学生是国家未来的期望,教育好他们,把他们培养成材,是我们教育工作者的职责。我清楚地意识到,教育是一项高难度的工作,要做好是很困难的。但只要我付出真心和努力,就必须会有所收获的。

2022数学概论心得体会精选二

四则运算的知识和技能是小学生学习数学需要掌握的基本知识和基本技能。“四则运算”这个单元主要包括四则混合运算和四则运算的顺序。学生掌握四则运算顺序,能够正确地进行混合运算,不仅仅丰富了计算知识,提高了计算潜力,为进一步学习代数运算做好准备,同时也使学生学会列综合算式解决问题,提高学生用数学解决问题的潜力。

运算顺序学生以前接触过,简单的脱式计算也涉及到,但运算顺序仍然是学生学习的一个难点。虽然拿到一个算式,你问他先算什么?再算什么?他都明白,但在实际操作中问题却很大,有相当多的孩子写完算式之后就开始按从左到右的顺序计算,甚至遇到不够减的时候还把被减数和减数颠倒位置。这说明了看似简单的运算顺序并不象想象的那么简单,只要记住运算顺序就能计算,在识记和运用上还存在着脱节问题。

学生在学习上还存在着一些困难,对脱式计算的格式的书写问题也很多,主要是把先算的部分写在等号后面,不计算的把它扔在一边,什么时候需要了再写出来,出现了上下算式不相等的状况;还有的把先算的部分写前面,任意颠倒数字以及运算符号的顺序,导致计算结果出错。

应对学生学习中出现的种.种问题,我陷入了思考。出现这些问题的原因很多,比如受低年级学习的影响,在先算的部分下方划线,误以为先算的要写下来,而不是把计算的结果写下来。

如何解决这些难题呢?

第一,解决问题,引导学生理解先算什么再算什么,从而明确运算顺序。

第二,熟记运算顺序,到达张口就来的水平,这样在计算时就构成条件反射,看到算式之后就明白先算什么再算什么,运算顺序的熟记,为学生计算的步骤打下了坚实的基础。这一关解决了学生头脑中的一个难题。

第三,在书写格式上要做好示范工作,边讲边写,告诉学生这一步算的什么,写的数是哪个算式的结果,从而让学生明白没有参与计算的要原搬照抄,参与计算的是写计算结果。

第四,练习时要让学生说计算的运算顺序,利用同桌或左右邻的关系进行互帮互助,到达生生之间的合作交流。

第五,在解答解决问题时,提倡学生列综合算式,在纠正错误中让孩子理解四则混合运算的运算顺序和正确的书写要求,提高学生的综合潜力和计算潜力。

虽然单元结束时学生掌握了运算顺序和脱式计算的要求,但在教学中还是走了一些弯路,有时候达不到想要的结果,感觉比较苦恼。

常常反思,不断总结,时刻不忘记录过程中的得与失,会让自我减少走弯路的机会,让自我更快的成长。

2022数学概论心得体会精选三

一 做题方式要尽快转变转

很多文科生做数学题很喜欢:做题(有些人甚至是看题)——不会——看懂答案(或者看不懂)——结束,你是不是这样呢?合适的方法是:做题——不会——把目前能计算或推导的结论写出来,想想还差什么---看一眼答案,有些是一看就恍然大悟——那么就自己再重新算一遍,然后好好总结下为什么刚才没算出来,是方法没遇过还是要经过变形自己没看出来,有时候一道题做不出来答案一看就是种超纲题或者偏题难题,数学三一般考的都是最常见,最基础的方法,所以那些冷门方法一律放弃。

二 建立独立思考的解题方式

不要老是看答案,这样才能摆脱文科思维。如果只是一味地机械做题,背答案,即使你做了李永乐的全套也还是没用。

复习全书和指南我都用过,但我推荐全书,就数三而言,全书的题更好更全面,其实两本书很多题目都是重复的。不要说复习全书看了3,4遍,这样太笼统,就像我一站时全书做了7.8遍不也只有110左右嘛,我个人觉得2遍为宜,做得太多后来只会记住题目而不是思维方法。我推荐全书2遍后直接上真题,基础差的甚至660也不用做,因为660的题有些比全书还打,直接做数三真题,然后自己薄弱的地方找全书查漏补缺,而不是反复抱着全书死磕,因为你没个重点,以为全书每道题都要掌握。通过做真题,你知道哪些是数三常考内容,哪些不是,你慢慢会发现全书上哪些是有价值的题目,真题做完数三做做数一数二的相关题,然后上模拟卷,模拟卷至少上30套吧,推荐合工大10-13的,李永乐400题,陈文灯的模拟。

三 严格掐时间做模拟题

首先,很多经验帖不强调模拟题,甚至反对模拟,这和数学基础有关,正如前文所述。逻辑思维好的同学完全可以做做教材,全书,真题然后考个140 ,因为他们数学基础好,他们懂得如何做题。而基础差的同学,像我,可能做个n遍全书仍不得其法。而模拟题或者说真题具有一下全书或者660之类的题集所不具备的几大优势:

1.通过严格掐时间做套题,可以培养你做题的时间优势,对难题有所放弃。今年数三小题难,大题简单,很多人慌了手脚,这就是平时缺乏演练的结果,本人后期保持一天一套题的速度模拟,懂得如何跳过难题,保证计算率,不慌张,可以说考试当天对我来说只是一场模拟,所以我很淡定,要知道基础越差的同学,越是对数学害怕的文科生越是容易在考场紧张!

2.套题一般都是集中出线常考的知识点,有些套题几乎是真题的翻版,改个数字,而数三真题的最大特点就是来自真题,就像13的数三来自往年数三和数一数二的太多了。所以做模拟就是加强对常考知识点的考核,而不像许多全书不分重点。

3.反复看以前做的题容易记住题目本身。许多同学做了7,8遍全书,全书的题都快背出来了,但考场变个型就不知道了,而模拟题很多都是对真题的适当变形,或者自创题,这里强烈推荐合工大的模拟,很接近真题,难度又稍高于真题,我平时合工大模拟130 ,结果也是和最终成绩吻合的。

以上建议希望能给数学基础差,对其有恐惧心态的考生们一些启迪与精神上的鼓励。绝不要忽略数学基础的重要性,通过做模拟题的训练,提高做套题的思维强度。最后期待大家都可以一战成功,金榜题名!

2022数学概论心得体会精选四

我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。

孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。

一、在解题的方法规律处反思

“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。

例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。

变式1 已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)

变式2 已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)

变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)

变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。

变式5 已知等腰三角形的腰长为x,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)

再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(ab为⊙o的直径,c为⊙o上的一点,ad和过c点的切线互相垂直,垂足为d。求证:ac平分∠dab)

通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。

二,在学生易错处反思

学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!

有这样一个曾刊载于《中小学数学》初中(教师)版20__年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?, a学生的答案是“9”,老师一看:错了!于是马上请b同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。

计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:

(1)请分别指出(—2)2,—22,—2-2,2-2的意义;

(2)请辨析下列各式:

① a2 a2=a4 ②a4÷a2=a4÷2=a2

③-a3 ·(-a)2 =(-a)3 2 =-a5

④(-a)0 ÷a3=0 ⑤(a-2)3·a=a-2 3 1=a2

解后笔者便引导学生进行反思小结.

(1)计算常出现哪些方面的错误? (2)出现这些错误的原因有哪些? (3)怎样克服这些错误呢? 同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。

三、在情感体验处反思

因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得

数学概论心得体会精选 数学思想概论读后感(8篇)

在平日里,心中难免会有一些新的想法,往往会写一篇心得体会,从而不断地丰富我们的思想。那么心得体会该...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?