数学中外合作心得体会 初中数学小组合作心得体会(7篇)
从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。我们想要好好写一篇心得体会,可是却无从下手吗?以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。
描写数学中外合作心得体会一
今日我们有幸听了中心小学龚教师的一节数学课,我觉得这节课质朴文华,耐人寻味,具体体此刻以下几个方面:
>
这节课的教学目标是让学生去经历长方形和正方形面积计算公式的推导过程,理解并掌握长方形和正方形面积计算公式,并能运用公式进行长方形和正方形的面积计算,让学生在解决简单实际问题的过程中培养应用意识,同时在动手实践、合作交流等学习活动中发展学生的观察本事、操作本事和抽象概括本事,培养符号感。从这节课的教学实施上看,基本到达了本节课的教学目标,激发了学生学习数学的欲望和兴趣。
>
新课伊始,教者运用多媒体出示了等宽不等长和等长不等宽的两组长方形,经过观察,让学生初步感知长方形的面积与它的长和宽有关系,为学生探索长方形的面积计算做孕伏和铺垫。在例1的教学中让学生小组合作:用若干个小正方形摆三个不一样的长方形,填表并交流所摆的长方形的面积各多少平方厘米?然后经过例2的教学,引导学生动手实践,让学生测量、观察、汇报交流测量的方法和结果:能够沿着长摆一行,共用5个小正方形;沿着宽摆一列,共由4个小正方形,说明每行5个小正方形,共可摆4列,共需要摆20个小正方形,面积就是20平方厘米,最终出示试一试中的长方形,学生在小组里交流想法,再向全班同学汇报。在此基础上让学生小组讨论:经过刚才的实践和合作学习交流,你们觉得长方形的面积与它的长和宽有什么关系?怎样求长方形的面积呢?总结抽象概括出长方形的面积计算公式:长方形的面积=长×宽。
学生的数学学习的是充满了观察、操作、探索、抽象、概括与交流等丰富多彩的数学活动,让学生摆一摆、想一想、说一说,亲历操作——思考——交谈——抽象概括的过程,让学生自主探索得出长方形的面积计算公式,开展学生之间、师生之间的互动交流,经过交流与思考获得丰富的学习体验,让学生在合作中体验成功的喜悦,在主动参与、乐于探索中发展自我。
>
皮亚杰的“发生认识论”基本观念有两条:一是儿童的认识是在主客体的相互作用中构成的,应十分强调活动;二是主体的认识是一种主动、进取的建构过程,其中“同化——顺应——平衡”是建构的基本环节。在探索正方形面积计算公式时教者先出示一个长方形并求长方形的面积(长5厘米,宽3厘米),然后借助多媒体演示:将长方形的宽分别增加1厘米、2厘米,使之变成长都是5厘米,宽分别为4厘米、5厘米的两个长方形,并根据“长方形的面积=长×宽”计算两个长方形的面积并引导学生观察长为5厘米,宽为5厘米的长方形:这是个什么图形?它的面积怎样计算的?由长方形的面积公式能否推导得出正方形的面积计算公式?学生讨论并交流:正方形的面积=边长×边长。教者引导学生进取探索,主动建构,将正方形的面积公式纳入长方形的面积公式中,也仅有经过学生主动建构概括的知识,才能真正纳入自我已有的知识结构中,优化了学生思维过程,取得了认识上的平衡。
>
在完成基本练习后,教者设计了一道拓展题进行深化练习,请同学们拿出一张正方形纸(边长为10厘米),学生独立求出正方形的面积,再请同学们将这张正方形纸沿着某条线对折,使这张正方形纸对折后两边的部分完全重合,有几种折法?会求出对折后图形的面积吗?学生根据要求对折成长方形或三角形,并计算出三角形的面积:10×10=100(平方厘米)100÷2=50(平方厘米),教师这时因势利导:我们虽然没有学习三角形面积计算公式,但我们会在今后学习中进行研究。最终一题的设计独具匠心,让学生在题目的拓展、延伸中动手操作,并设置三角形面积计算的悬念,始终让学生思维处于兴奋的最佳状态,使学生在实践操作中学习,在实践操作中创新,满足了学有余力学生的需求,实现了“不一样的人在数学上得到不一样的发展”的基本理念。
当然,蒋教师这节课也有不尽如人意的的地方,主要体此刻课堂有效教学的问题。例如,在学生小组合作学习时教师要适时加以点拨,学生合作交流还有些不到位的地方,关于有效学习的问题,我们今后将会从效果、效率、效益三个层面,在校本教研时做进一步探讨。
描写数学中外合作心得体会二
人教六下第五单元《数学广角》中是对抽屉原理的学习,这一内容在以前是奥数的教学内容,新教材把这一部分内容纳入了数学广角。当第一次看到《抽屉原理》成为必学内容时,老师们都很困惑:这么难的内容学生能理解吗?我的印象里《抽屉原理》也是非常坚深难懂的。为了上好这一内容,我搜集学习了很多资料,对我帮助比较大的是一篇题为《解读“抽屉原理”教材——对人教版六年级下册第五单元《数学广角》的剖析》的文章,作者是湖北省仙桃市教育科学研究院的秦和平老师。文中对“抽屉原理”作了深入浅出的分析,使我对“抽屉原理”有了新的认识,也终于理出了头绪。抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。
在本单元的教学中,我力求做到以下几点:
1.经历“数学化”的过程。
“创设情境——建立模型——解释应用”是新课程倡导的课堂教学模式,本节课运用这一模式,设计了丰富多彩的数学活动,让学生经历探究过程,培养学生的数学思维能力。
2.提供探索空间。
本单元的教学中,我充分放手,让学生自主思考,如:“把4根小棒放到3个杯子里,不管怎么放,总有一个杯子里至少有2根小棒。” 把要求提具体,让学生在小组里摆一摆,看把4根小棒放到3个杯子里,可以怎样放?一共有多少种不同的摆法?然后再验证,看每一种摆法是不是都符合结论。这样每个学生都能体验枚举法。由枚举出的各种摆法,引导学生理解“总有一个”和“至少”的含义,同时也通过观察每一种摆法,让学生初步感受到(4,0,0)、(3,1,0)、(2,2,0)这三种摆法都很满足结论,而(2,1,1)是刚好满足……3.注重引导提升。
分析时在学生自主探究的基础上,我引导学
数学中外合作心得体会 初中数学小组合作心得体会(7篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。