个人工作总结范文大全 企业个人工作总结范文大全(8篇)
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,让我们一起认真地写一份总结吧。总结怎么写才能发挥它最大的作用呢?下面是小编为大家带来的总结书优秀范文,希望大家可以喜欢。
最新个人工作总结范文大全(精)一
我具有坚定的政治立场,在大是大非问题上我能与领导保持一致,认真贯彻执行路线方针,认真学习,以思想鞭策自己。时刻牢记人民的利益为第一,能为每个患者解除痛苦是我们每个护理人员的神圣使命。
我安心工作,积极参加医院和科室的理论学习和政治教育活动,并认真做好记录,作为一名医护人员,不应该好高骛远,要立足本职,专心工作,作到需患者所需,急患者所急。在工作中我从不迟到早退,值班时从不擅离岗位及外出不归等。能全心全意为病员服务,对待病员我能像对待亲人一样,从不跟病员吵架。每一天上班,我能够保持甜蜜的笑容,对军、地方病员,我都一视同仁,不弄虚作假;对发生差错和纠纷,从不欺瞞,积极向领导汇报,从不接受患者吃请,不收红包。
我对待病员真诚热心,不嫌贫爱富、唯利是图,生活作风严肃,无对外不纯洁交往,从不与地方不三、不四的人员交往。
今后的目标:我决心进一步振奋精神,加强个人世界观的改造,努力克服自己存在的问题,作到:
1、扎实抓好理论学习,保持政治上的坚定性。
2、在院领导、科主任的关心和指导下,顺利完成医疗护理工作任务,认真履行职责,爱岗敬业。
3、以科室为家,工作积极主动,对待病员热情、耐心,满足病人的需要。
护理工作虽然琐碎虽然平淡,但有时我真的很为自己骄傲。我是生命的守候者,许许多多的人因为我的努力我的辛勤我的认真我的热情我的奉献,过着幸福快乐的日子。我的双手我的微笑我的善待让这个世界温暖!虽然他们不能记忆我的名字,虽然他们不知道我的付出,虽然他们不了解我的辛苦,但赠人玫瑰手有余香!我们是那样的天使!所以在许许多多的深夜白昼,我虽然游走在病人、疼痛、鲜血、呻吟、伤病中,但我快乐!
最新个人工作总结范文大全(精)二
如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。
对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过tb级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大cpu和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。
这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。
下面我们来详细介绍一下处理海量数据的经验和技巧:
现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用oracle或者db2,微软公司最近发布的sqlserver20xx性能也不错。另外在bi领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的etl工具和好的olap工具都十分必要,例如informatic,eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用sqlserver20xx需要花费6小时,而使用sqlserver20xx则只需要花费3小时。
处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。
对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如sqlserver的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘i/o,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。
对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个etl流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。
当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/buffer,这对于这个级别的数据量是可行的。
如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1gb,1个p42.4g的cpu,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096m的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为4096xx6 1024=25600m,解决了数据处理中的内存不足问题。
海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。
数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。
在对海量数据进行查询处理过程中,查询的sql语句的性能对查询效率的影响是非常大的,编写高效优良的sql脚本和存储过程是数据库工作人员的职责,也是检验数据库工作人员水平的一个标准,在对sql语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。笔者在工作中试着对1亿行的数据使用游标,运行3个小时没有出结果,这是一定要改用程序处理了。
对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择,是一定要选择程序操作文本的,原因为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等。例如一般的海量的网络日志都是文本格式或者csv格式(文本格式),对它进行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。
海量数据中存在着不一致性,极有可能出现某处的瑕疵。例如,同样的数据中的时间字段,有的可能为非标准的时间,出现的原因可能为应用程序的错误,系统的错误等,这是在进行数据处理时,必须制定强大的数据清洗规则和出错处理机制。
视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘i/o,正如10根绳子吊着一根柱子和一根吊着一根柱子的区别。
目前的计算机很多都是32位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的机子,其中对位数的限制也十分重要。
海量数据处理过程中,除了对数据库,处理程序等要求比较高以外,对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制,临时空间的处理等问题都需要综合考虑。
数据量加大是一定要考虑olap的,传统的报表可能5、6个小时出来结果,而基于cube的查询可能只需要几分钟,因此处理海量数据的利器是olap多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等。
基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率。一般采样时要注意数据的完整性和,防止过大的偏差。笔者曾经对1亿2千万行的表数据进行采样,抽取出400万行,经测试软件测试处理的误差为千分之五,客户可以接受。
还有一些方法,需要在不同的情况和场合下运用,例如使用代理键等操作,这样的好处是加快了聚合时间,因为对数值型的聚合比对字符型的聚合快得多。类似的情况需要针对不同的需求进行处理。
海量数据是发
个人工作总结范文大全 企业个人工作总结范文大全(8篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。