电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

初一数学知识点总结图 初一数学知识点总结(15篇)

来源:互联网作者:editor2024-01-312

工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和分析,从中找出经验和教训,引出规律性认识,以指导今后工作和实践活动。怎样写总结才更能起到其作用呢?总结应该怎么写呢?以下是小编收集整理的工作总结范文,仅供参考,希望能够帮助到大家。

初一数学知识点总结图 初一数学知识点总结篇一

1.同底数幂的乘法:am?an=am n ,底数不变,指数相加。

2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。

3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。

4.零指数与负指数公式:

(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。

(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。

5.(1)平方差公式:(a b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;

(2)完全平方公式:

① (a b)2=a2 2ab b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;

② (a-b)2=a2-2ab b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;

※ ③ (a b-c)2=a2 b2 c2 2ab-2ac-2bc

6.配方:

(1)若二次三项式x2 px q是完全平方式,则有关系式: ;

※ (2)二次三项式ax2 bx c经过配方,总可以变为a(x-h)2 k的形式。

注意:当x=h时,可求出ax2 bx c的最大(或最小)值k。

※(3)注意: 。

7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

(2)完全平方公式:

① (a b)2=a2 2ab b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;

② (a-b)2=a2-2ab b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;

※ ③ (a b-c)2=a2 b2 c2 2ab-2ac-2bc

6.配方:

(1)若二次三项式x2 px q是完全平方式,则有关系式: ;

※ (2)二次三项式ax2 bx c经过配方,总可以变为a(x-h)2 k的形式。

注意:当x=h时,可求出ax2 bx c的最大(或最小)值k。

※(3)注意: 。

7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

多项式里,次数最高项的次数叫多项式的次数;

注意:(若a、b、c、p、q是常数)ax2 bx c和x2 px q是常见的两个二次三项式。

9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

10.合并同类项法则:系数相加,字母与字母的指数不变。

11.去(添)括号法则:去(添)括号时,若括号前边是“ ”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

平面几何部分

1、补角重要性质:同角或等角的补角相等.

余角重要性质:同角或等角的余角相等.

2、①直线公理:过两点有且只有一条直线.

线段公理:两点之间线段最短.

②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;

(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.

比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.

3、三角形的内角和等于180

三角形的一个外角等于与它不相邻的两个内角的和

三角形的一个外角大于与它不相邻的任何一个内角

4、n边形的对角线公式:

各个角都相等,各条边都相等的多边形叫做正多边形

5、n边形的内角和公式:180(n-2); 多边形的外角和等于360

6、判断三条线段能否组成三角形:

①a b

初一数学知识点总结图 初一数学知识点总结(15篇)

工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?