电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

勾股定理心得体会和方法 快速掌握勾股定理(5篇)

来源:互联网作者:editor2024-02-012

我们在一些事情上受到启发后,应该马上记录下来,写一篇心得体会,这样我们可以养成良好的总结方法。那么心得体会该怎么写?想必这让大家都很苦恼吧。以下是我帮大家整理的最新心得体会范文大全,希望能够帮助到大家,我们一起来看一看吧。

描写勾股定理心得体会和方法一

在教学方法与教材处理方面,根据现在的教材特点,教学内容以及在新课标理念的指导下,最后决定让学生在课堂上多动手、多观察、多交流,最后得出定理,这个方法符合新课程理念观点,也符合教师的主导作用与学生的主体地位相统一的原则。

同时,在教学中,我充分利用教具和投影仪,提高教学效率。在实验,演示,操作,观察,练习等师生的共同活动中启发学生,培养学生直觉思维能力,结合学生实际情况作适当的拓广。

我参加这次教学技能大赛,获益良多主要体现在以下几个方面:

(1)在数学教学中,一些结论的表述是很重要的,而我在这节课上有些表述确实不是很正确;而且我在课堂上,尤其是知识点的联系方面的引导词,更加需要再努力钻研。今后我将在这方面下工夫,在去听其他数学老师的课时,要注意其他老师在知识点同知识点之间的过渡语句。

(2)一些该让学生知道的知识点,讲得不够透彻。如cd是直径,其实应该可以拓展为过圆心的直线(要多强调,而不是一笔带过);不能够用数量关系求的,应该要适当地引导学生设未知数。而不是直接告诉学生这种题目就是要设未知数。同样在已知一条边,不够条件求解时,也要引导学生利用未知数来解题的这种题目,引导得不够,或者话引导得不够深刻,学生就会觉得是老师直接将知识倒向他,而他不一定能接受。

(3)在学案设计方面,在时间上把握得不够准确,设计的学案内容太多,在这节课上如果估计过量已经足够的话,垂径定理的推论其实可以放在下节课。这样就不会使得后面讲推论的时间太短,太仓促。前面复习用的时间太长,在复习的部分应该多加些关于勾股定理的计算的题目,使学生在后面解直角三角形时能够更加快,更熟练;而学案中练习题的量太少,而且是题型太单一,可以再做多些找相等的量的基础训练,对b班的学生更加熟悉垂径定理,基础题目的掌握对b班大有好处。

(4)其实这节课还有个作图思想要灌输比学生,即是教学生如果见到弦心距,弦,那么直接连半径构成直角三角形;如果就是只知道一条弦的题目,就要边弦心距都要作出来,而这两种题目我的训练都不到位。

(5)还有其他很多问题:例题的讲解不够详细,深刻。给学生思考的时间不够;题目的梯度设计得不是很好……

最后,这些失误给了我一个今后的努力的方向。在今后的学习中,我努力钻研教材改正自己缺点。

描写勾股定理心得体会和方法二

在这一环节中,我设计了这样一个情境,多媒体动画展示,米老鼠来到了数学王国里的三角形城堡,要求只利用一根绳子,构造一个直角三角形,方可入城,这可难坏了米老鼠,你能帮它想办法吗?预测大多数同学会无从下手,这样引出课题。只有学习了勾股定理的逆定理后,大家都能帮助米老鼠进入城堡,我认为:“大疑而大进”这样做,充分调动学习内容,激发求知欲望,动漫演示,又有了很强的趣味性,做到课之初,趣已生,疑已质。

本环节要围绕以下几个活动展开:

1、算一算:求以线段a,b为直角边的直角三角形的斜边c长。

1a=3b=42a=5b=123a=2.5b=64a=6b=8

2、猜一猜,以下列线段长为三边的三角形形状

13cm4cm5cm25cm12cm13cm

32.5cm6cm6.5cm46cm8cm10cm

3、摆一摆利用方便筷来操作问题2,利用量角器来度量,验证问题2的发现。

4、用恰当的语言叙述你的结论

在算一算中学生复习了勾股定理,猜一猜和摆一摆中学生小组合作动手实践,在问题1的基础上做出合理的推测和猜想,这样分层递进找到了学生思维的最近发展区,面向不同层次的'每一名学生,每一名学生都有参与数学活动的机会,最后运用恰当的语言表述,得到了勾股定理的逆定理。在整个过程的活动中,教师给学生充分的时间和空间,教师以平等的身份参与小组活动中,倾听意见,帮助指导学生的实践活动。学生的摆一摆的过程利用实物投影仪展示,在活动中教师关注;

1)学生的参与意识与动手能力。

2)是否清楚三角形三边长度的平方关系是因,直角三角形是果。既先有数,后有形。

3)数形结合的思想方法及归纳能力。

八年级正是学生由实验几何向推理几何过渡的重要时期,多数学生难以由直观到抽象这一思维的飞跃,而勾股定理的逆定理的证明又不同于以往的几何图形的证明,需要构造直角三角形才能完成,而构造直角三角形就成为解决问题的关键,直接抛给学生证明,无疑会石沉大海,所以,我采用分层导进的方法,以求一石激起千层浪。

1.三边长度为3cm,4cm,5cm的三角形与以3cm,4cm为直角边的直角三角形之间有什么关系?你是怎样得到的?请简要说明理由?

2.△abc三边长a,b,c满足a2 b2=c2与a,b为直角三角形之间有何关系?试说明理由?

为了较好完成教师的诱导,教师要给学生独立思考的时间,要给学生在组内交流个别意见的时间,教师要深入小组指导与帮助,并利用实物投影仪展示小组成果,取得阶段性成果再探究问题2.这样由特殊到一般,凸显了构造直角三角形这一解决问题的关键,让他们在不断的探究过程中,亲自体验参与发现创造的愉悦,有效的突破了难点。

描写勾股定理心得体会和方法三

教学难点:垂径定理的证明方法,其中圆的轴对称性是理解垂径定理的关键。

二、教学目标的确立

根据本课的具体内容、学生的实际情况,我确立了如下的教学目标:

1、通过直观演示了解圆的轴对称性。

2、通过“试验——观察——猜想——证明”掌握垂径定理及其推论。

3、运用垂径定理解决有关的证明、计算和作图问题。 4、培养学生的数学直觉能力、抽象概括能力。激发学生的探索精神。

三、教学方法与手段的选择

在教学方法方面:本节课主要采用了教师启发引导下的学生自主探究、小组合作学习以及分层教学、分层评价的方法。

在教学过程中,遵循“实验-观察-猜想-证明-讨论-总结-应用”这一思路,使学生由感性认识上升到理性认识,再到实际应用。遵循“阶梯式发展”原则,引导学生在独立分析、认真思考的基础上,以小组讨论等形式合作探究,进而解决问题、掌握方法。同时,考虑到不同层次学生的学习需要,在所提问题、例题、习题的设置上,均力争使每名学生都有所得。

在教学手段方面

勾股定理心得体会和方法 快速掌握勾股定理(5篇)

我们在一些事情上受到启发后,应该马上记录下来,写一篇心得体会,这样我们可以养成良好的总结方法。那么...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?