数字油画骗局的心得体会范文 画数字油画赚钱是真的吗(八篇)
我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?以下是小编帮大家整理的心得体会范文,欢迎大家借鉴与参考,希望对大家有所帮助。
对于数字油画骗局的心得体会范文一
但是远远高估了自己的意志力,以为在手机随时能查阅,阅读的时间会缩短不少,结果,刚好就是使用手机阅读,每次打开手机,就忍不住的去刷其他了。所以,算下来整整是一个月的时间了,才看完。
本书开头有点想要打破“一万个小时”定律的味道,但是越读到后面,越觉得作者是很认可这个定律的,但是作者把这个概念更加进一步的解释完整,让人们不再是迷迷糊糊的以为,只要我在某一个领域中付出了一万小时的努力,就能成为这个行业的专家。一万个小时是基本条件,但是你如果只是重复的做,一万个小时,可能就是简单的一万个小时而已。那一万个小时付出成为专家的那些人是怎么做到的呢。因为他们在一万个小时吉,做到了“刻意练习”。
刻意练习,意味着你需要在每天的重复动作中去打破跟突破,每次设定好一个目标,做到了,继续把这个目标进行升级,加以重复的练习。
有目的的练习,包含了以下的特点:
一:有目的的练习具有定义明确的特定目标。我们假想的音乐学生如果确定了类似下面这样的练习目标,可能会比他漫无目的的练习要成功得多:“连续三次,不犯任何错误,以适当的速度弹奏完曲子。”如果不制订这样一个目标,就没有办法判断练习是不是成功了。
二:有目的的练习是专注的。如果你的任务目标是要记住100个连续的数字串,首先的任务是记住30个,然后顺利的记住了;接着进行35个,这次可能需要进行几次,你才能记住,但是完成了35个之后;难度继续增加,此时你可能已经很兴奋了,因为之前从来没有突破过35,继续给你增加难度你还是会很乐意接受,来吧,继续;终于40个的数字,居然都记住了,虽然已经不能再继续增加难度了,因为没办法继续完成下去了。要想取得进步,必须完全把注意力集中在你的任务上。
三:有目的的练习包含反馈。你必须知道某件事情自己做得对不对,如果不对,你到底怎么错了。一般而言,不论你在努力做什么事情,都需要反馈来准确辨别你在哪些方面还有不足,以及怎么会存在这些不足。
四:有目的的练习需要走出舒适区。对于任何类型的练习,这是一条基本的真理:如果你从来不迫使自己走出舒适区,便永远无法进步。比如,业余钢琴爱好者在十几岁的时候就开始上钢琴课,等到30年过去了,他还在以完全相同的方式弹奏着那些同样的歌曲,看起来,在那段时间里,他已经积累了数十万个小时的“练习”,但他绝不会比30年前弹得更好。事实上,可能还比年轻时弹得更差。
作者也在书中列举了众多的明星,伟人。之所以他们能够确定如此的成就,并不是天赋造就,而是脱离不开日复一日、年复一年的练习。一万个小时是基础,但是要想突破,你就得加上“刻意练习”。
对于数字油画骗局的心得体会范文二
教学目标:
1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。
2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。
3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。
教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。
教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。
教学过程:
一、 唤起与生成
1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。
2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!
3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。
确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。
4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!
二、探究与解决
(一)、小组探究:4放3的简单鸽巢问题
1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
2、审 题:
①读题。
②从题目上你知道了什么?证明什么?
(我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)
③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?
“不管怎么放”:就是随便放、任意放。
“总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。
“至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。
3、探 究:
①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?
②活 动:小组活动,四人小组。
听要求!
活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。
听明白了吗?开始!
3、反 馈:汇报结果
同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?
可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)
追 问:谁还有疑问或补充?
预设:说一说你比他多了哪一种放法?
(2,1,1)和(1,1,2)是一种方法吗?为什么?)
只是位置不同,方法相同
5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?
(1)逐一验证:
第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?
符合总有一个笔筒里至少有2支铅笔。
第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。
第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。
第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。
符合条件的那个笔筒在三个笔筒中都是最多的。
(2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?
(3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。
所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
(二)自主探究:5放4的简单鸽巢原理
1、过 渡:依此推想下去
2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。
3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)
4、验 证:你们的猜测对吗?让我们来验证一下。
活动要求:
(1)思考有几种摆法?记录下来。
(2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。
好,开始。(教师参与其中)。
5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法
分别是:5000 、4100、 3200、 3110 、2200、2111
(课件同步播放)
预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。
6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。
7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:
①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。
②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。
不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。
(三)、探究鸽巢原理算式
1、谈 话:哎,如果这里有 100支铅笔放进30个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?
还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?
(好麻烦,是啊, 想想都觉得麻烦!)
2、追 问:数学是一门简洁的科学,那就请同学们想一想,除了通过操作一一列举出来,有没有什么方法能一下子找到结果呢?
其实,我们刚才已经和那一种方法见过面,以4放3为例,请同学们认真观察每一种摆法,分别找一找,哪一种摆法最能说明:总有一个笔筒里至少放有2支铅笔呢?
3、平均分:为什么这样分呢?
生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)
师:你为什么要先在每个笔筒中放1支呢?
生:因为总共只有4支,平均分,每个笔筒只能分到1支。
师:为什么一开始就要去平均分呢?
生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。
师:我明白了,但这样能证明总有一个笔筒中肯定会有2 支笔,怎么就证明了至少有2支呢?
生:平均分已经使每个笔筒中的笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。
师:看来,平均分是保证“至少”数的关键。
4、列式:
①你能用算式表示吗?
4÷3=1……1 1 1=2
②讲讲算式含义。
a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1 1=2,所以总有一个笔筒至少有2支铅笔。
b、真棒!讲给你的同桌听。
5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔 请用算式表示出来。
5÷4=1……1 1 1=2
说说算式的意思。
a、同桌齐说。
b、谁来说一说?
师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。
(四)探究稍复杂的鸽巢问题
1、加深感悟:我们继续研究这样的问题,边计算边思考:这样的题目有什么特点?结论中的至少数是怎样得到的?
2、题组(开火车,口答结果并口述算式)
(1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔
(2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔
7÷5=1…… 2 1 2=3?
7÷5=1…… 2 1 1=2
出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)
你认为哪种结果正确?为什么?
质 疑:为什么第二次还要平均分?(保证“至少”)
把铅笔平均分才是解决问题的关键啊。
(3)把笔的数量进一步增加:
8支铅笔放5个笔筒里,至少数是多少?
8÷5=1……3 1 1=2
(4)9支铅笔放5个笔筒里,至少数是多少?
9÷5=1……4 1 1=2
(5)好,再增加一支铅笔?至少数是多少?
还用加吗?为什么 10÷5=2 正好分完, 至少数是商
(6)好再增加一支铅笔,,你来说
11÷5=2……1 2 1=3 3个
①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)
②那同学们再想想,铅笔的支数到多少支时,至少数还是3?
③铅笔的支数到多少支的时候,至少数就变成了4了呢?
(7)把28支铅笔放进
数字油画骗局的心得体会范文 画数字油画赚钱是真的吗(八篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。