电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

数学心得体会示范课教师和感想 数学教师教学心得(7篇)

来源:互联网作者:editor2024-02-012

学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。那么我们写心得体会要注意的内容有什么呢?下面我给大家整理了一些心得体会范文,希望能够帮助到大家。

描写数学心得体会示范课教师和感想一

很多文科生做数学题很喜欢:做题(有些人甚至是看题)——不会——看懂答案(或者看不懂)——结束,你是不是这样呢?合适的方法是:做题——不会——把目前能计算或推导的结论写出来,想想还差什么---看一眼答案,有些是一看就恍然大悟——那么就自己再重新算一遍,然后好好总结下为什么刚才没算出来,是方法没遇过还是要经过变形自己没看出来,有时候一道题做不出来答案一看就是种超纲题或者偏题难题,数学三一般考的都是最常见,最基础的方法,所以那些冷门方法一律放弃。

二 建立独立思考的解题方式

不要老是看答案,这样才能摆脱文科思维。如果只是一味地机械做题,背答案,即使你做了李永乐的全套也还是没用。

复习全书和指南我都用过,但我推荐全书,就数三而言,全书的题更好更全面,其实两本书很多题目都是重复的。不要说复习全书看了3,4遍,这样太笼统,就像我一站时全书做了7.8遍不也只有110左右嘛,我个人觉得2遍为宜,做得太多后来只会记住题目而不是思维方法。我推荐全书2遍后直接上真题,基础差的甚至660也不用做,因为660的题有些比全书还打,直接做数三真题,然后自己薄弱的地方找全书查漏补缺,而不是反复抱着全书死磕,因为你没个重点,以为全书每道题都要掌握。通过做真题,你知道哪些是数三常考内容,哪些不是,你慢慢会发现全书上哪些是有价值的题目,真题做完数三做做数一数二的相关题,然后上模拟卷,模拟卷至少上30套吧,推荐合工大10-13的,李永乐400题,陈文灯的模拟。

三 严格掐时间做模拟题

首先,很多经验帖不强调模拟题,甚至反对模拟,这和数学基础有关,正如前文所述。逻辑思维好的同学完全可以做做教材,全书,真题然后考个140 ,因为他们数学基础好,他们懂得如何做题。而基础差的同学,像我,可能做个n遍全书仍不得其法。而模拟题或者说真题具有一下全书或者660之类的题集所不具备的几大优势:

1.通过严格掐时间做套题,可以培养你做题的时间优势,对难题有所放弃。今年数三小题难,大题简单,很多人慌了手脚,这就是平时缺乏演练的结果,本人后期保持一天一套题的速度模拟,懂得如何跳过难题,保证计算率,不慌张,可以说考试当天对我来说只是一场模拟,所以我很淡定,要知道基础越差的同学,越是对数学害怕的文科生越是容易在考场紧张!

2.套题一般都是集中出线常考的知识点,有些套题几乎是真题的翻版,改个数字,而数三真题的最大特点就是来自真题,就像13的数三来自往年数三和数一数二的太多了。所以做模拟就是加强对常考知识点的考核,而不像许多全书不分重点。

3.反复看以前做的题容易记住题目本身。许多同学做了7,8遍全书,全书的题都快背出来了,但考场变个型就不知道了,而模拟题很多都是对真题的适当变形,或者自创题,这里强烈推荐合工大的模拟,很接近真题,难度又稍高于真题,我平时合工大模拟130 ,结果也是和最终成绩吻合的。

以上建议希望能给数学基础差,对其有恐惧心态的考生们一些启迪与精神上的鼓励。绝不要忽略数学基础的重要性,通过做模拟题的训练,提高做套题的思维强度。最后期待大家都可以一战成功,金榜题名!

描写数学心得体会示范课教师和感想二

在这一年里,我思考的主要是教学总结,改进的问题。我想对于老教师的经验的借鉴在这个方面显得尤为重要。在此我要感谢一年来一直帮助我、关心我的老教师们。从他们的经验中我体会到数学的核心——问题;总结出解决问题的途径——问的是什么、有什么、还有什么、是什么;教会学生如何去学习:勤于思考、善于提问、解决问题。数学问题成为数学教学创新的载体。

在形成概念时,留给学生充足的思维空间,多角度、全方位地提出有价值的问题,让学生思考;指导学生自主地建构新概念。在辨识概念时,鼓励学生质疑。宋代有一位教育家说过:“读书无疑者,须教有疑。有疑者却要无疑,到这里方是长进。”从学生的角度看,学贵有疑是学习进步的标志,也是创新的开始。

经过一段训练后,学生便能清楚什么是数学证明,什么不是。并且知道数学证明的价值及其局限性。

加强目的性。注意渗透解题策略。因为策略往往是不容易为学生掌握的。注意解题训练的坡度和难度。如果解题训练有一个坡度,可以使学生循序渐进从易到难,完成一个小题,相当上了一个台阶,完成了最后一题,好像登上了山顶,回首俯望,小山连绵,喜悦之心,不禁而生。如果题组没有难度,学生不可能有疑,重重复复会令人乏味。反之,设置一定陷阱、难度,学生经过探索、推敲,把疑难解决了,既巩固了基础,又实现了从有疑到无疑的飞跃,体验到解题的劳动价值。

我想要做到上述三个方面,必须改变传统的单一的“传授——接受”的教学模式,在课堂教学中,首先要营造平等、相互接纳的和谐气氛,要及时提出具挑战性的新问题,这些问题要具思维价值,并为创新做出示范。并能激发学生积极参与课堂教学活动。要留给学生思维的空间,同时要鼓励学生提出不同的想法和问题,提倡课堂师生的交流和学生与学生间的交流,因为交流可令学生积极投入和充分参与课堂教学活动。通过交流,不断进行教学信息的交换、反馈、反思,概括和总结数学思想方法。在交流中,作为老师耐心倾听学生提出的问题,并从中捕捉有价值的问题,展开课堂讨论,并适时做出恰当的评价,使班集体成为一个学习的共同体,共同分享学习的成果。善于与他人对话、协调,自尊与尊重他人、自我的反思、自我调控的品格。其次尽力帮助学生主动建构数学认知系统,使学生形成良好的数学知识网络。

描写数学心得体会示范课教师和感想三

1、函数、极限与连续。主要考查极限的计算或已知极限确定原式中的常数、讨论函数连续性和判断间断点类型、无穷小阶的比较、讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,关键是要对这些概念有本质的理解,在此基础上找习题强化。

2、一元函数微分学。主要考查导数与微分的定义、各种函数导数与微分的计算、利用洛比达法则求不定式极限、函数极值、方程的的个数、证明函数不等式、与中值定理相关的证明、最大值、最小值在物理、经济等方面实际应用、用导数研究函数性态和描绘函数图形、求曲线渐近线。求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

3、一元函数积分学。主要考查不定积分、定积分及广义积分的计算、变上限积分的求导、极限等、积分中值定理和积分性质的证明、定积分的应用,如计算旋转面面积、旋转体体积、变力作功等计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。这一部分主要以计算应用题出现,只需多加练习即可。

4、向量代数和空间解析几何。计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。

5、多元函数的微分学。主要考查偏导数存在、可微、连续的判断、多元函数和隐函数的一阶、二阶偏导数、多元函数极值或条件极值在与经济上的应用、二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。

6、多元函数的积分学。包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积

数学心得体会示范课教师和感想 数学教师教学心得(7篇)

学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?