电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

平行四边形的性质心得体会简短 平行四边形的性质知识点总结(8篇)

来源:互联网作者:editor2024-02-022

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。我们如何才能写得一篇优质的心得体会呢?下面是小编帮大家整理的优秀心得体会范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

推荐平行四边形的性质心得体会简短一

1、让学生经历看、数、想、剪、移、拼、说等过程探讨平行四边形的面积公式,并能用字母表示,会用公式计算平行四边形的面积。

2、通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透“转化”和“平移”的思想,体会“等积变形”的方法,并培养学生的分析,综合,抽象概括、语言表达和动手解决实际问题的能力。

3、通过活动,激发学习兴趣,培养探索精神,获得成功体验,感受数学与生活的密切联系。

使学生理解和掌握平行四边形面积公式并会应用。

理解平行四边形面积计算公式的推导过程。

平行四边形纸片、剪刀及电脑课件、三角板。

谈话:出示两个美丽的花坛(课件呈现)。

提问:请大家观察一下,这两个花坛哪一个大呢?

师:这都是你们用眼睛看的不一定准确,我们必须想其他的办法来证明,但不管用什么办法来比较它们的大小,必须知道他们的什么?它们的面积你会算吗?

然后给出长方形的长和宽让学生计算长方形的面积。

提问:那平行四边形的面积你会算吗?从而导入新课。

板书课题:平行四边形的面积

(设计意图:本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的。欲望,感受数学与生活的密切联系。)

(1)数方格,用数方格的方法来求平行四边形和长方形的面积,要求自学完成中间的格子图和表格,最后认真观察这个表格中的数据,看你发现了什么?(电脑出示)

(2)汇报交流自己的发现。

(3)提问:如果我给你一个好大好大的花坛,不用数方格的方法,你能很快地计算出平行四边形的面积吗?

小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。

(设计意图:本环节主要通过让学生用数方格的方法,初步感知平行四边形与长方形面积之间的联系,同时为下一步的探究提供思路,做好铺垫。)

(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成已经会计算面积的图形。(这时教师巡视,了解情况)

(2)精彩展示:要求边讲边操作。

提问:为什么都要转化成长方形?

为什么一定要沿着高剪开呢?

接着电脑演示其它方法,渗透割补、平移法

(设计意图:通过让学生亲身经历把平行四边形转化成一个长方形的全过程,为下一个环节建立联系,推导公式起到了一个推波助澜的作用。同时告诉学生学会一种解题方法比做十道题都重要,教会学生“会学”。)

(1)小组合作探索:

a、原来的平行四边形转化成长方形后,什么变了?什么没变?

b、拼成长方形的长与原来平行四边形的底有什么关系?

c、拼成长方形的宽与原来平行四边形的高有什么关系?

d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?

(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)

提问:用字母怎么表示呢?自学课本81页。

学生回答s=ah(板书)

提问:s、a、h分别表示什么呢?

提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)

(设计意图:本环节主要让学生观察,发现、比较、归纳,从具体到抽象,从感性到理性循序渐进,推导出了平行四边形面积的计算公式,充分尊重了学生的主体地位,突破了难点,解决了关键,发展了学生能力。)

a、前面的花坛题

b、课本82页第2题:你能想办法求出下面两个平行四边形的面积吗?

(教师巡视,收集典型的错误,强调书写格式,对应的底和高)。

(设计意图:此练习题量虽然不大,但涵盖了今天所有的知识点,具有一定的弹性,使不同的学生得到了不同的发展,从而进一步内化了新知。)

(四)课堂总结,深化新知

师:同学们,通过今天的学习,你有什么收获呢?

(设计意图:师生共同概括小结,这样会给学生一个系统、完整的印象,不但使本节课有了一个精彩的结尾,而且进一步深化了新知。)

课后反思:

通过认真反思本节课的教学,我从中认真总结了一些成功的经验和失败的教训。

●成功经验

尽可能让学生充分暴露自己的思维过程,进行思维碰撞,发挥小组集体的智慧,进一步出主意、想办法,有效解决问题,体现了数学教育的实质性价值,立足了“基本”,注重了“过程”。

在本节课中,主要让学生动手操作,亲自感知,利用“割补、平移”法经历了把平行四边形转化成一个长方形的全过程,有效地渗透了“转化”的思想,从而学会了利用旧知识来解决新问题,同时使学生明白学会一种解题方法比做十道题都重要,教会学生“会学”。

这节课恰当地运用了多媒体课件演示,直观、生动、形象地展现了图形的转化过程及各部分之间的对应关系,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其它教学手段无法比拟的。

●失败教训

比如:当追问“为什么要沿着高剪开呢?”这时学生回答不出来,由于担心时间不够,我提示学生想想长方形的特征,如果不急着提示,让学生结合自己转化后的图形多看看、多想想,也许学生自己就能解答。作为教师,学生能自己解决的问题,我们绝不代替。

例如,发给学生的学具“平行四边形”就忘记在四周描上一个边框,只是在课件上有所显示,,从而不利于教学平行四边形与转化后的长方形之间的联系。特别在讲这些平面图形的周长时,如:教学圆的周长时,如果不描,那只是圆的内部,而不是圆的周长。因此,细节不容忽视。

总之,教学为我们留有了缺憾,有了缺憾,并不可怕,关键是我们必须认真反思总结,从缺憾中走出来,化缺憾为精彩!

推荐平行四边形的性质心得体会简短二

(一)说课内容:人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第80-81页的内容。

平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。

(二)教学目标

知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

(三)教学重点、难点、关键点:

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:平行四边形面积公式的推导方法—转化与等积变形。

关键点:通过实践——理论——实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。

(四)教具、学具准备:多媒体课件、实物投影仪、平行四边形卡片、剪刀。

学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

(一)说教法

1、发展迁移原则

运用迁移规律,把平行四边形转化成长方形进行教学。注意从旧到新,体现“温故知新”的教学思想和等积转化这种重要的数学思想。

2、学生为主体,教师为主导的教学原则

针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。

3、以实物教具、学具作为辅助手段进行教学,体现直观、形象原则。

4、运用探究式教学方法,教会学生自主合作、动手实践、观察交流的探究式学习方法。

5、教学设计联系生活实际进行教学,渗透数学无处不在的的思想,培养学生用数学知识解决实际问题的意识。

(二)说学法

学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。

1、小组合作学习,培养学生团结协作的合作意识和能力。

2、引导学生用探究式学习方法,会用这种学习方法进行自主学习,并留给学生足够的探究学习的时间。所以我计划用20分钟左右的时间让学生在老师的引导下通过动手操作、发现、讨论、总结、推导出平行四边形的面积计算公式。以此来突出这节课的重点,突破难点。

3、我用:两个老师家的车位是否能调换?贯穿整个教学活动,把教学活动变成了帮忙解决生活问题的活动,联系生活实际,并且做到首尾呼应,过度自然。使学生明白:数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。

为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:

一、情景引入,激趣导课(课件出示两张车位照片)

(一个长方形的车位和一个平行四边形的车位)

创设生活情景,问:为了生活方便,能否交换两家的停车位?

揭示课题,并板书课题。

(设计意图:通过创设情景,提出问题,促使学生积极动脑猜想,要比较两个车位的面积,必须会计算长方形和平行四边形的面积。长方形的面积会求了,平行四边形的面积如何计算呢?从而引出本节课的课题:平行四边形的面积计算)

二、动手实践,探究发现。

1、指导学生预习课本81页的内容,使学生通过自学掌握平行四边形转化长方形的方法。

2、实践操作,提出猜想。

请同学们想一想,想好了小组交流,并动手用学具,联系学过的方法,在小组里讨论,看哪组能最快解决问题?

(1)学生小组合作,动手操作。

教师巡视指导。

(我在设计学具时,在平行四边形学具上画有高和任意斜线。意图是使学生在操作中明白:只有沿着高剪才能拼出长方形。)

(2)适时引导学生,围绕以下两个问题进行讨论:说说你发现了什么?

①拼出的长方形和原来的平行四边形比,什么变了,什么没变?

②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

3、交流汇报。学生先全班交流,教师在指名到实物投影仪上演示拼剪过程,并说出小组的发现。

4、教师课件演示,边演示边讲解。

5、强化拼剪过程及发现,推导成平行四边形面积公式。

6、前后呼应,解决悬念。

计算导入时的两个车位面积,得出结论:能调换两个车位,因为两个车位的面积相等。

7、课堂阶段性小结。

设计意图:新课标指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一环节的教学设计,我发挥教师的引导作用,倡导学生动手操作、合作交流的学习方式,进而建构了学生头脑中新的数学模型:实践——理论——实践。整个过程是学生在实践分组讨论中,不断完善提炼出来的,这样完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。

三、尝试计算,强化练习。

1、口算。

(1)a=4m,h=3m,s=? (2)a=8cm,h=6cm,s=?

2、求下面图形的面积。

自选条件计算。

强调:求平行四边形的面积必须用底×高,不能底×邻边。

3、解决问题。

(1)拓展延伸(机动练习)

(2)有一块平行四边形铁板,底边长25米,高是13米,每平方米重7.8千克,这块铁板重多少千克?

练习设计第一题:用字母出示底和高,求面积。第二题:看图自选条件计算。第三题:文字出示已知面积和底,求平行四边形的高。题目呈现方式的多样,难度阶梯式深入,有层次的练习设计,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。从字母到图形再到文字,层层深入,强化提高。把拓展练习设计为机动练习是为课堂生成做的一种预设。

四、课堂小结,巩固新知。

1、这节课我们学习了什么知识?

2、有关平面图形的知识,你还想知道什么?

设计意图:有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。

推荐平行四边形的性质心得体会简短三

四年级数学《垂直与平行》说课稿

一、说教材。

1、教材分析:

《垂直与平行》是现行人教版义务教育课程标准实验教科书小学数学四年级上册第四单元《平行四边形和梯形》的第一节课,教学内容在教材的64—65页。

2、教学目标:

(1)知识与技能:引导学生初步理解垂直与平行是同一平面内两条直线的两种特殊的位置关系,初步认识垂线和平行线。

(2)过程与方法:通过“摆筷子”和“折纸”等活动培养学生亲自动手操作、合作探究新知的能力;培养空间观念和空间想象能力。

(3)情感态度与价值观:使学生进一步认识和体会学习数学的乐趣和数学的重要作用。

3、教学重难点:

教学重点:正确理解“同一平面”“相交”“互相平行”“互相垂直”等概念,发展学生的空间想象能力。

教学难点:相关现象的正确理解(尤其是对看似不相交,而实际上是相交现象的理解)。

二、说策略。

1、学情分析:这个知识点既建立在学生已经学过的直线和角的知识的基础上,同时又要为进一步学好平行四边形和梯形等重要知识打下坚实的基础,在小学数学中的平面几何知识体系里具有承上启下的重要地位。因为是几何知识

平行四边形的性质心得体会简短 平行四边形的性质知识点总结(8篇)

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?