cdr课程心得体会实用 cdr实训心得(6篇)
心得体会是指一种读书、实践后所写的感受性文字。那么心得体会怎么写才恰当呢?下面是小编帮大家整理的优秀心得体会范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
2022cdr课程心得体会实用一
1、了解基底的含义,理解并掌握平面向量基本定理。会用基底表示平面内任一向量。
2、掌握向量夹角的定义以及两向量垂直的定义。
前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备
重点:对平面向量基本定理的探究
难点:对平面向量基本定理的理解及其应用
4.1第一学时教学活动
活动1【导入】情景设置
火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j.
活动2【活动】探究
已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量
c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)
做法:
作oa=e1,ob=e2,oc=c,过点c作平行于ob的直线,交直线oa于m;过点c作平行于oa的直线,交ob于n,则有且只有一对实数l1,l2,使得om=l1e1,on=l2e2.
因为oc=om+on,所以c=6 e1+6e2.
向量c=__6__e1+___6__e2
活动3【练习】动手做一做
请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____
(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)
由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2.
活动4【活动】思考
问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?
生:不行,e1,e2必须是平面内两不共线向量
活动5【讲授】平面向量基本定理
平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2.我们把不共线向量e1,e2叫做这一平面内所有向量的一组基底.一个平面向量用一组基底e1,e2表示成a=l1e1+l2e2的形式,我们称它为向量的分解.当e1,e2互相垂直时,就称为向量的正交分解.
说明:
(1)基底不惟一,关键是作为基底的两个向量不共线.
(2)由定理可将任一向量a在给出基底e1,e2的条件下进行分解,基底给定时,分解形式惟一,即l1,l2是被a,e1,e2惟一确定的数量.
活动6【讲授】平面向量基底运用
例1. 如图所示,平行四边形abcd的对角线ac和bd交于点m,ab=a,ad=b,试用基底a,b表示mc,ma,mb和md
活动7【讲授】向量夹角的定义
阅读教材p94,回答如下问题:
1、两个向量夹角是如何形成的?,必须要满足什么条件才是它们的夹角。
2、有向量夹角范围是多少?有夹角大小来描述一下向量同向,反向,垂直?
活动8【练习】完成《聚焦课堂》活动9【讲授】课后小结
1、平面向量基本定理
2、平面向量基本定理的运用
3、向量夹角的定义。
活动10【作业】课后作业
1、已知向量e1,e2,求做:-3e1 2e2
2、做育才报第八期专项训练1
2022cdr课程心得体会实用二
多年来,传统的教学研究都是围绕学科自身进行的,诸如如何进行知识传授、学法指导、能力培养等等,而忽视了课堂教学评语的育人功能。而许多教学成绩优秀的教师,不仅具有良好的专业技能,而且还有良好的观察、倾听和谈话的技能。他们很注重教学评语对学生的影响。随着新课改的实施,教学评语在教学中的地位将显得越来越重要。
所谓课堂教学评语,就是在教学过程中教师对学生学习的一种最常用、最简单的评价方式,是指明学生学习活动申某个细节正确与否的一种语言描述。我们主张积极的课堂教学评语,因为它是学生及时了解自我、强化正确、改正错误、找出差距、促进努力、健康发展的重要途径,它还是沟通思想情惑、推进积极思维、培养创新能力的有效方法之一。但消极的课堂教学评语,则会干扰课堂教学的进行,影响学生的注意力,对形成学生积极的思维起副作用。
在具休教学中,这些积极的功能表现在哪些方面呢?下面结合数学课堂教学谈一下自己的一些感受和做法。
客观、正确的教学评语,是学生及时获得对知识信息反馈的重要手段,通过这种途径,学生可以了解自己的学习情况,分析学习中的差距,检验学习中的得失,从而调节学习过程节,改进学习方法,优化自己的解题思路。同时赞同的评定,是学生产生心理上的满足、强化其学习的积极性、促成其主动学习的一种有效手段。
例如,在学习一元二次方程的根与系数关系的时候,我提出了这样一个问题:实数a,b满足a2-3a=l,b2-3b=1且a不等于b,求代数式a b的值。一般同学有惯性思维,一直在想求a与b的值,而有一位同学反映很快,换个角度思考,把a、b看成方程x2-3x-1=0的两个根,将复杂问题一下子解决了。不少同学非常羡慕,这时教师作如下评语:“你能改变原有的思维方式,善于居学活用知识,寻求捷径,很快有了答案,说明你对概念有很好的掌握。长时间下去,你的思维一定会更加活跃,将来你仍有希望取得类似成功,或更大的成功!”短短的一段评语,不仅是对学生平时努力的肯定,使其产生兴奋,同时也反映出教师此刻喜悦的心情,其效益也会胜出师生的一次长谈,甚至影响其一生。
教师的评语,可指明学生学习中的成功与失败。在数学教学中,表现为解题方法的繁与简、速度的快与慢、思路的敏捷程度、广阔程度,作业书写的好与环,以及要改迸的途径等,它会使学生明确努力的方向。
例如,在一节数学公开课上,学生完成了对题目的板演,执教老师问:同学们看,该同学做的对不对?“对”几乎是齐声回答。“谁还有什么补充的吗?”这时一个同学站了起来:“我认为该同学虽然把题做对了,但他的态度不认真,字迹潦草不说,还不用直尺画数轴,结果把数轴画的像弧线…”老师频频点头,并投去赞同的目光,“这个同学说得很对,因为我们无论做什么,都应该有认真的态度,踏实的作风……”。我想这是该课成功的地方之一。
再如,在课堂上提问时,有的同学不举手就喊,这时教师说:“我喜欢xx同学发言先举手。”以及纠正作业时,“某某同学的作业总是全对,解法简捷,书写流畅。”这种评价效果类似于我们常说的“榜样”的作用。
教师对学生的学习给予的评语,不仅是一种语言的描述,更重要的是对学生学习活动迸行认真的分析和评估,既可以使学生深刻认识、记住学习内容,掌握学习方法,又可使教师及时发现教学中的问题,比较客观的把握这些问题,及时改迸教法,因材施教,使教学过程始终完善、和谐地迸行。
例如,在学习几何——“矩形”一节的内容时,有这样一个问题:已知点p是矩形abcd内的一点,求证:pa2+pc2=pb2十pd2。在对题目进行演变时,有位同学提出:“如果点p离开矩形平面‘遨游太空’,上述结论仍然不变!”,全体同学哗然。这时教师对学生说:“这位同学善于想像,且题目演变合理,将来你能成为一个数学诗人。但证明要画一个立体图形,有兴趣的可以课后做一做,到了高中你还会继续研究”。通过教师的一席话,学生得到了满足,他们的注意力立即被拉了回来。
布鲁姆认为学生在学习某一特定课题前的准备机制,比教师的授课更重要,而学生对学习的自我评价,则是他门学会独立学习的重要标志。学生依据经常获得的外部评价经验,逐渐培养起自我评价能力。而教师的评价往往也可作为自我评价的依据,所以教师给予学生的评语,对学生加深自我了解,促进努力,将有十分深远的意义。
中学阶段,大部分学生已具备一定的自我评价能力,并开始注意评价自己。下面是几位同学学习数学的感受:“我平时很喜欢学习数学,愿意欣赏它的美,甚至在语文、英语课堂上岂在偷偷地做题,因为问题解决后有一种难以言传的喜悦,一个定理的发现,一个猜想的证明,是多么的令人激动与陶醉啊!教师越激励,我就越有劲,所以我经常想获得这种刺激与荣耀。”有的学生结合教师给他的评语,时常这样评价自己:“我学数学比较呆板,一见题目就想套公式用定理,老老实实的硬算,所以题目做得很繁,作业、考试老觉得时间不够,吃尽了苦头。在老师的指导下我开始讲究方法,重视思维训练,慢慢的改变了原来的习惯,并取得了一定的收获。”还有的同学认为“基本概念清晰,但运算怕繁;做几何题时总找不到思路”。更有同学感到自己对数学的意识不够强,“脑子中没有数学细胞,数学是我心中的恐惧所在,多次为没有好的分数而难过。”等等。总之,差不多所有学生对自己学习数学均有一个基本合理的评价。这对学生充实、完善、提升自我是大有好处的。
由于数学课堂教学评语的类型广泛,不同的评语收益不同,功能各异,如何运用它,怎样发挥其功能,使课堂教学高效高质呢?
评语是一门艺木,对学生的评语要精心设计,使其丰富多彩。有时不一定正好“对准”学生,不妨换一个角度,效果还可能更好。例如有位同学在全国数学竟赛申获奖,当教师在全班面前宣布这一消息时,全体同学情绪高涨,教师也情不自禁的发出感慨:“我为有这样的学生而骄傲!”或用英语“iloveyou!”、“iamhappyforyoursuccess!”短短一语包含了教师对学生的一片爱心。
教师对学生的评语,常会被教师和学生之间的感情所左右,教师一定要克服两种偏见:对后进的学生评价过于严格,而对自己喜欢的学生评价过高。所以对优秀学生的评价应尽可能客观,使他们向更高的目标努力,同时要不失时机的提醒他们防止骄傲情绪的滋长,使他们懂得“在成功的延长线上不一定仍是成功”。而对差生也可采用肯定的评语,表扬他们的进步,使他们尝试成功的休验,增强他们的自尊和
cdr课程心得体会实用 cdr实训心得(6篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


