抽象代数心得体会万能版 抽象代数自学(7篇)
从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。
对于抽象代数心得体会万能版一
后面的1/2的3/4,以及对例5的两个算式的理解都是同出一辙。但要注意两者教学时的区别:例4是让学生从图中猜想(感知)出两个分数乘分数的结果。例5是让学生先猜算结果,再用图来验证。二者在教学中的顺序是相反的,但其目的都是让学生从图形直观感知进而理会出分数乘分数的计算方法。
但是从学生的反馈来看,好像不能够充分理解,确实是太抽象了,虽然有图的辅助。分开来看都能理解斜线部分是1/2的1/4,又是这张纸的1/8。但是为什么1/2的1/4就是1/8呢?这其间可是隐含着两个不同的单位1啊。学生能转得过来吗?单靠猜想感知行吗?教学时我是照书按步就班的教的,但有不少学生好像钻到云雾里去了。
为什么呢?怎么办呢?
原因很简单太抽象了。
办法是有的化抽象为形象:我们来看看练习九的第1题,与例题的最大的区别在于例题是在数之间思考,练习中的第1题是在数量之间的思考。不要小瞧这一点变化,借助数量来理解就比例题数之间的理解要容易得多。
本课的教学目的是教学分数乘分数的计算方法,前面的几个例题都是借助具体的数量让学生理解算理的,而分数乘分数比前面的几个例题都复杂些,但是却摆脱数量而抽象成数,学生的思维难度陡增。为什么不借助数量呢?如果把例题转换成像练习九第1题这样的情境,学生会很容易列式,也比较容易理解算理。在此基础之上,再抽象成数,如例题式样的,学生学起来会好得多。]
对于抽象代数心得体会万能版二
本节课在教学中充分借助学生已有的知识基础,通过观察、涂画、比较、归纳等活动,通过例题的直观操作,通过知识的迁移帮助学生理解了分数乘分数的意义,初步掌握了分数乘分数的计算方法。在教学中我注重了以下几点;
一、创设情境、直观导入
在教学中为了突破教学的难点,使学生能够真正理解分数乘法计算法则的算理,一开始我就请同学们看黑板上贴的长方形纸,涂色部分分别表示这张纸的几分之几?,通过对长方形纸的涂色,很好的揭示这一道理。将抽象的算理与直观的示意图结合起来,使抽象思维和形象思维结合起来。在解决算理时,通过数与形之间的对应和转化,从而启发计算思维。比如画斜线的1份占1/2的1/4,此时的单位"1"是1/2,但是对于整个长方形来说是1/8,此时的单位“1”是一个长方形。
二、关注算理的推导
“新课程标准”指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”这一新的理念说明:数学教学活动将是学生经历一个数学化的过程,是学生自己建构数学知识的活动。因此,本课时力图让学生亲自经历学习过程。即让学生在动手操作——探究算法——举例验证——交流评价——法则统整等一系列活动中经历“分数乘分数”计算法则的形成过程。
新知教学时我出示“1/2×1/3”猜一猜这个算式表示什么意义?我提示学生想一想分数与整数的意义 看一看适合分数与分数相乘吗?最后学生得出,“1/2×1/3”表示二分之一的三分之一是多少。这时,我告诉学生这道算式也可以表示三分之一的二分之一是多少。 我想肯定有同学能够很好掌握,可是肯定也会有一部分学生不能理解,于是我接着要求学生用画图的形式表示出这个算式的意义。这样既可以帮助学生自主地理解分数与分数相乘的意义也加深学生对“分数与分数相乘” 计算法则的理解。
当学生画出这个算式所表示的意义时,我问学生,从图中你能看出“1/2×1/3”的结果吗?学生一下子就说了结果1/6,然后我又出了几个分数与分数相乘的算式要求学生先画图再说出得数这样经过几次动手操作,学生对分数乘法的计算有了深刻的理解。
三、注重学法的渗透
本课时从教学的整体设计上是由“特殊”去引发学生的猜想,再来举例验证、然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出“分数乘分数”只要“分子不变,分母相乘”或 “分子相乘,分母相乘”的计算方法,再由学生自己用画图、折纸、分数的意义等方法来验证这种计算方法,发现了“分数乘分数,分子不变,分母相乘”的特殊性,以及“分数乘分数,分子相乘,分母相乘”的普遍性。这其间渗透了科学的学习方法和实事求是的科学精神。
这样在计算教学中关注学生的自主探究,让学生自己去做、去悟、去经历、去体验,去创造,既培养了学生合作意识,提高学习的自主性,又使学生在理解掌握方法的同时提高解决问题的能力,形成良好的数学情感与价值观。
对于抽象代数心得体会万能版三
本节课在教学中充分借助学生已有的知识基础,通过观察、涂画、比较、归纳等活动,通过例题的直观操作,通过知识的迁移帮助学生理解了分数乘分数的意义,初步掌握了分数乘分数的计算方法。在教学中我注重了以下几点;
一、创设情境、直观导入
在教学中为了突破教学的难点,使学生能够真正理解分数乘法计算法则的算理,一开始我就请同学们看黑板上贴的长方形纸,涂色部分分别表示这张纸的几分之几?,通过对长方形纸的涂色,很好的揭示这一道理。将抽象的算理与直观的示意图结合起来,使抽象思维和形象思维结合起来。在解决算理时,通过数与形之间的对应和转化,从而启发计算思维。比如画斜线的1份占1/2的1/4,此时的单位"1"是1/2,但是对于整个长方形来说是1/8,此时的单位“1”是一个长方形。
二、关注算理的推导
“新课程标准”指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”这一新的理念说明:数学教学活动将是学生经历一个数学化的过程,是学生自己建构数学知识的活动。因此,本课时力图让学生亲自经历学习过程。即让学生在动手操作——探究算法——举例验证——交流评价——法则统整等一系列活动中经历“分数乘分数”计算法则的形成过程。
新知教学时我出示“1/2×1/3”猜一猜这个算式表示什么意义?我提示学生想一想分数与整数的意义 看一看适合分数与分数相乘吗?最后学生得出,“1/2×1/3”表示二分之一的三分之一是多少。这时,我告诉学生这道算式也可以表示三分之一的二分之一是多少。 我想肯定有同学能够很好掌握,可是肯定也会有一部分学生不能理解,于是我接着要求学生用画图的形式表示出这个算式的意义。这样既可以帮助学生自主地理解分数与分数相乘的意义也加深学生对“分数与分数相乘” 计算法则的理解。
当学生画出这个算式所表示的意义时,我问学生,从图中你能看出“1/2×1/3”的结果吗?学生一下子就说了结果1/6,然后我又出了几个分数与分数相乘的算式要求学生先画图再说出得数这样经过几次动手操作,学生对分数乘法的计算有了深刻的理解。
三、注重学法的渗透
本课时从教学的整体设计上是由“特殊”去引发学生的猜想,再来举例验证、然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出“分数乘分数”只要“分子不变,分母相乘”或 “分子相乘,分母相乘”的计算方法,再由学生自己用画图、折纸、分数的意义等方法来验证这种计算方法,发现了“分数乘分数,分子不变,分母相乘”的特殊性,以及“分数乘分数,分子相乘,分母相乘”的普遍性。这其间渗透了科学的学习方法和实事求是的科学精神。
这样在计算教学中关注学生的自主探究,让学生自己去做、去悟、去经历、去体验,去创造,既培养了学生合作意识,提高学习的自主性,又使学生在理解掌握方法的同时提高解决问题的能力,形成良好的数学情感与价值观。
对于抽象代数心得体会万能版四
一、复习目标:
(1)使所学知识系统化、结构化、让学生将三年的数学知识连成一个有机整体,更利于学生理解;
(2)精讲多练,巩固基础知识,掌握基本技能;
(3)抓好方法教学,引导学生归纳、总结解题的方法,适应各种题型的变化;
(4)做好综合题训练,提高学生综合运用知识分析问题的能力。
二、复习方法与措施:
考虑到数学复习的时间和任务,中考的数学复习最好分三轮进行。太少,复习没有层次性;太多,时间上不允许。
第一轮,摸清初中数学的知识脉络,开展基础知识系统复习。第一轮复习是总复习的基础,侧重点是双基训练。近几年的中考题安排了较大比例(约70%)的试题来考查“双基”。全卷的基础知识覆盖面较广,起点低,许多试题源于课本,有的是对课本原型进行加工、组合、延伸和拓展。在这个阶段,教师要引导学生扎扎实实地夯实基础。具体的做法是:
1.使学生按照新课程标准的要求去把握各个知识点,特别要记牢记准一些重要的公式、定理、公理等。要提醒学生注意公式、定理中的隐含条件。
2组织、引导、协助学生将一些相关的、相近的知识点进行整理和比较,掌握基础知识之间的联系,要做到理清知识结构,形成知识体系,并能综合运用。例如,在复习绝对值的性质时,可以将绝对值的非负性和平方、算术平方根的
抽象代数心得体会万能版 抽象代数自学(7篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。