电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

导数的心得体会和感想 关于导数的笔记(八篇)

来源:互联网作者:editor2024-02-022

我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。我们想要好好写一篇心得体会,可是却无从下手吗?下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。

关于导数的心得体会和感想一

考点1:用经典工具计算函数、数列极限

七种未定式;单调有界原理,夹逼准则,海涅定理

考点2:深刻理解,并会使用无穷小比阶、无穷大比阶

三个应用场景:极限本身、积分判敛、级数判敛

考点3:深刻理解导数定义及其几何意义

导数定义;求切线法线;高阶导数

考点4:三大逻辑题

① 最值、介值、费马、罗尔、拉格朗日、泰勒、柯西、积分中值定理(可以开区间也可以闭区间)

② 不等式

③ 方程根(等式)

考点5:导数的几何应用

三点(极值点、拐点、最值点)两性(单调性、凹凸性)一线(渐近线)(数一数二曲率)

考点6:不定积分与定积分存在定理

考点7:换元法、分部积分法、凑微分法、有理函数的积分(思路)

考点8:积分的几何应用

考点9:多元函数概念

(5个:极限、连续、可微、导函数连续、偏导数存在)、计算、多元函数极值与最值

考点10:二重积分性质与计算

考点11:按类求解微分方程(凑到基本形式)

考点12:数一数三:级数判敛、收敛域、求和、展开

考点13:数一:投影、旋转、切平面法线、切线法平面;三重积分(形心公式)、一类曲面积分、二类曲线曲面积分,傅里叶级数。

关于导数的心得体会和感想二

1、点式学习

数学知识由一系列的基本定义、基本定理、基本方法组成,这些基本的知识点两两结合,三两结合就能构成不同难度,不同层次的考题,但追根究底,若没有对这些小知识点透彻的学习是不可能漂亮求解复杂问题的。所谓“不积跬步无以至千里”就是道理所在。如何才能深刻理解这些知识点的内涵呢?

一般也需要分三步:一、这个点在讲什么?二、这个点揭示了什么?三、这个点如何使用?例如,中值定理里有一个拉格朗日中值定理,从以上三个层次理解就是:一、讲切线与两端点连线的问题;二、揭示了导数与函数的内在关系;三、可以用来沟通函数与导数,出现在不等式证明及中值定理证明题目中。

2、线式学习

在掌握好第一步单个知识点的学习后,就好比我们手里有有一把珠子,要想便于携带需要把这些散珠穿起来,这就是线式学习。那么这条穿珠子的线是什么呢?我认为应该是各章节之间的联系。至于如何找到这条线,其实不难,大家手头的教材的编排都是按照一定的逻辑关系进行的,我们只需深刻理解教材的编排方式就可以将珠子穿起来了。当然,每个人的水平又是不同的,有人理解的深刻,有人理解就浅见一些,不过,只要多下功夫,“读书百遍,其意自现”。

3、面式学习

过线式学习,我们已经把知识做成了一根根线,现在需要把这些线织起来。线与线之间的联系就需要站高一些来看了,各个章节是要解决什么问题,综合起来又是要解决什么问题,这需要较高的抽象综合能力,分析问题的能力。

例如,从整体上看高等数学,首先研究函数极限连续,那这是在说明高等数学研究的对象及使用的工具,以极限的手段研究连续函数;后续研究导数及其应用以及中值定理,这是进入一元函数微分学的,一元函数微分学学清楚了后边多元微分的学习就可以轻松进入,对比学习即可;再者就是一元函数积分学的学习,这是整个积分学的基础,后续多元的积分学,包括二重积分、三重积分、曲线面积分从本质上说要想计算出来都要转化成一元函数的积分来处理等。

关于导数的心得体会和感想三

1.函数连续是函数极限存在的充分条件。若函数在某点连续,则该函数在该点必有极 限。若函数在某点不连续,则该函数在该点不一定无极 限。

2,若函数在某点可导,则函数在该点一定连续。但是如果函数不可导,不能推出函数在该点一定不连续。

3.基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。

4.在一元函数中,驻点可能是极值点,也可能不是极值点。函数的极值点必是函数的驻点或导数不存在的点。

5.无穷小量与有界变量之积仍是无穷小量。

6.可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。

7.在求极 限的问题中,极 限包括函数的极 限和数列的极 限,但在考试中一般出的都是函数的极 限,求函数的极 限中,主要是掌握公式,有些不常见的公式一定要记熟,这种类型的题一般属于简单题,但往更难一点的方向出题的话,它会和变上限的定积分联系在一起出题。

8.在运用两个重要极 限求函数极 限的时候,一定要首先把所求的式子变换成类似于两个重要极 限的形式,其次还需要看自变量的取极 限的范围是否和两个重要极 限一样。

9.介值定理和零点定理的巧妙运用关键在于,观察和变换所要证明的式子的形式,构造辅助函数。

关于导数的心得体会和感想四

我参加过两次考研,第一次在x年,考北航计算机研究生:第二次,考西工大,x年研究生。两次考研,第一次312,第二次356.我将自己的感受写出来,希望能帮助大家。

x年的计算机,总分356,数学121,专业96,英语56,政治83.我自己是x年毕业的,工作一年后参加考研。其实这个分数自己还是比较满意的,专业课比自己预想的低了些。

先说一下数学吧,121分,不高也不低,相信如果考计算机,考中国任何一所大学都不会拉分。现在全国联考计

导数的心得体会和感想 关于导数的笔记(八篇)

我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?