电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

数学课程培训心得体会范本 数学课程培训心得体会范本怎么写(九篇)

来源:互联网作者:editor2024-02-022

我们在一些事情上受到启发后,应该马上记录下来,写一篇心得体会,这样我们可以养成良好的总结方法。那么你知道心得体会如何写吗?下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。

有关数学课程培训心得体会范本一

1教学目标

一、知识与技能:1、理解并掌握直线与平面平行的性质定理;

2、引导学生探究线面平行的问题可以转化为线线平行的问题,从而能够通过化归解决有关问题,进一步体会数学转化的思想。

二、过程与方法:通过直观观察、猜想研究线面平行的性质定理,培养学生的自主学习能力,发展学生的合情推理能力及逻辑论证能力。

三、情感、态度与价值观:培养学生主动探究知识、合作交流的意识,在体验数学转化过程中激发学生的学习兴趣,从而培养学生勤于动脑和动手的良好品质。

2重点难点

教学重点:线与面平行的性质定理及其应用。

教学难点:线与面的性质定理的应用。

3教学过程 3.1 第一学时 教学活动 活动1【导入】问题引入

一、问题引入

木工小刘在处理如图所示的一块木料,已知木料的棱bc∥平面a′c′.现在小刘要经过平面a′c′内一点p和棱bc将木料锯开,却不知如何画线,你能帮助他解决这个问题吗?

预设:(1)过p作一条直线平行于b′c′;

(2)过p作一条直线平行与bc。

(问题引入的目的在于激起学生对于这堂课的兴趣,带着问题学习目的性更强,效果也会更好。)

活动2【讲授】新课讲授

二、知识回顾

判定一条直线与一个平面平行的方法:

1、定义法:直线与平面没有公共点。

2、判定定理法:平面外一条直线与平面内的一条直线平行,则该直线与此平面平行。(线线平行→线面平行)

三、知识探究(一)

思考一:如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?

答:平行或异面。

思考2:若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?

答:无数条;平行。

思考3:如果直线a与平面α平行,经过直线a的平面β与平面α相交于直线b,那么直线a、b的位置关系如何?为什么?

答:平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。

思考4:综上分析,在直线a与平面α平行的条件下我们可以得到什么结论?

答:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.

(四个思考题的目的在于引导学生探究直线与平面平行的性质定理。)

四、知识探究(二)

定理:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.

定理可简述为:线面平行,则线线平行。

直线与平面平行的性质定理的符号表示:

(由图形语言到文字语言,再到符号语言,一步一步深化学生对该定理的理解)

活动3【练习】课堂练习

五、应用示例

练习1:判断下列命题是否正确,正确的画“√”,错误的画“×”。

(1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面。 ( × )

(2)如果直线a和平面α满足a∥α,那么a与α内的任何直线平行。 ( × )

(3)如果直线a,b和平面α满足a ∥α,b ∥α,那么a ∥b。 ( × )

例3 如图所示的一块木料中,棱bc平行于面a′c′.

(1)要经过面a′c′ 内一点p和棱bc将木料锯开,应怎样画线?

(2)所画的线与平面ac是什么位置关系?

分析:经过木料表明a′c′内的一点p和棱bc将木料锯开,实际上是经过bc及bc外一点p做截面,也就是找出平面与平面的交线。我们可以由直线与平面平行的性质定理和公理2、公理4作出。

练习2:如图,在空间四边形abcd中,e,f,g,h分别是ab,bc,cd,da上的点,eh∥fg,求证:fg∥bd.

活动4【讲授】课堂小结

六、课堂小结

1、直线与平面平行的判定定理

(1)定理 平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

(2)线线平行→线面平行

2、直线与平面平行的性质定理

(1)定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

(2)线面平行→线线平行

(课堂总结从文字语言、图形语言、符号语言三方面强调总结两个定理。)

活动5【作业】课后作业

p61练习,习题2.2a组:1,2. (做在书上)

p62习题2.2a组:5,6.

2.2直线、平面平行的判定及其性质

课时设计 课堂实录

2.2直线、平面平行的判定及其性质

1第一学时 教学活动 活动1【导入】问题引入

一、问题引入

木工小刘在处理如图所示的一块木料,已知木料的棱bc∥平面a′c′.现在小刘要经过平面a′c′内一点p和棱bc将木料锯开,却不知如何画线,你能帮助他解决这个问题吗?

预设:(1)过p作一条直线平行于b′c′;

(2)过p作一条直线平行与bc。

(问题引入的目的在于激起学生对于这堂课的兴趣,带着问题学习目的性更强,效果也会更好。)

活动2【讲授】新课讲授

二、知识回顾

判定一条直线与一个平面平行的方法:

1、定义法:直线与平面没有公共点。

2、判定定理法:平面外一条直线与平面内的一条直线平行,则该直线与此平面平行。(线线平行→线面平行)

三、知识探究(一)

思考一:如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?

答:平行或异面。

思考2:若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?

答:无数条;平行。

思考3:如果直线a与平面α平行,经过直线a的平面β与平面α相交于直线b,那么直线a、b的位置关系如何?为什么?

答:平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。

思考4:综上分析,在直线a与平面α平行的条件下我们可以得到什么结论?

答:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.

(四个思考题的目的在于引导学生探究直线与平面平行的性质定理。)

四、知识探究(二)

定理:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.

定理可简述为:线面平行,则线线平行。

直线与平面平行的性质定理的符号表示:

(由图形语言到文字语言,再到符号语言,一步一步深化学生对该定理的理解)

活动3【练习】课堂练习

五、应用示例

练习1:判断下列命题是否正确,正确的画“√”,错误的画“×”。

(1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面。 ( × )

(2)如果直线a和平面α满足a∥α,那么a与α内的任何直线平行。 ( × )

(3)如果直线a,b和平面α满足a ∥α,b ∥α,那么a ∥b。 ( × )

例3 如图所示的一块木料中,棱bc平行于面a′c′.

(1)要经过面a′c′ 内一点p和棱bc将木料锯开,应怎样画线?

(2)所画的线与平面ac是什么位置关系?

分析:经过木料表明a′c′内的一点p和棱bc将木料锯开,实际上是经过bc及bc外一点p做截面,也就是找出平面与平面的交线。我们可以由直线与平面平行的性质定理和公理2、公理4作出。

练习2:如图,在空间四边形abcd中,e,f,g,h分别是ab,bc,cd,da上的点,eh∥fg,求证:fg∥bd.

活动4【讲授】课堂小结

六、课堂小结

1、直线与平面平行的判定定理

(1)定理 平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

(2)线线平行→线面平行

2、直线与平面平行的性质定理

(1)定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

(2)线面平行→线线平行

(课堂总结从文字语言、图形语言、符号语言三方面强调总结两个定理。)

活动5【作业】课后作业

p61练习,习题2.2a组:1,2. (做在书上)

p62习题2.2a组:5,6.

有关数学课程培训心得体会范本二

公开课,是学校为我们提供的一个学习的平台,让我们有一个互相学习,共同提高的机会。我们都知道,课堂教学是一个“仁者见仁,智者见智”的话题,大家对教材的钻研都有自己独特的见解。所以,我也只能跟大家交流我个人听课的一点肤浅的看法。

(一

数学课程培训心得体会范本 数学课程培训心得体会范本怎么写(九篇)

我们在一些事情上受到启发后,应该马上记录下来,写一篇心得体会,这样我们可以养成良好的总结方法。那么...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?