电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

导数的心得体会精选 导数的难点(九篇)

来源:互联网作者:editor2024-02-022

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。我们想要好好写一篇心得体会,可是却无从下手吗?以下是我帮大家整理的最新心得体会范文大全,希望能够帮助到大家,我们一起来看一看吧。

推荐导数的心得体会精选一

一、多元函数(主要是二元、三元)的偏导数和全微分概念;

二、偏导数和全微分的计算,尤其是求复合函数的二阶偏导数及隐函数的偏导数;

三、方向导数和梯度(只对数学一要求);

四、多元函数微分在几何上的应用(只对数学一要求);

五、多元函数的极值和条件极值。

> 本章的常见题型有

1.求二元、三元函数的偏导数、全微分。

2.求复全函数的二阶偏导数;隐函数的一阶、二阶偏导数。

3.求二元、三元函数的方向导数和梯度。

4.求空间曲线的切线与法平面方程,求曲面的切平面和法线方程。

5.多元函数的极值在几何、物理与经济上的应用题。

第4类题型,是多元函数的微分学与前一章向量代数与空间解析几何的综合题,应结合起来复习。

极值应用题多要用到其他领域的知识,特别是在经济学上的应用涉及到经济学上的一些概念和规律,读者在复习时要引起注意。一元函数微分学在微积分中占有极重要的位置,内容多,影响深远,在后面绝大多数章节要涉及到它。

本章内容归纳起来,有四大部分

1.概念部分,重点有导数和微分的定义,特别要会利用导数定义讲座分段函数在分界点的可导性,高阶导数,可导与连续的关系;

2.运算部分,重点是基本初等函的导数、微分公式,四则运算的导数、微分公式以及反函数、隐函数和由参数方程确定的函数的求导公式等;

3.理论部分,重点是罗尔定理,拉格朗日中值定理,柯西中值定理;

4.应用部分,重点是利用导数研究函数的性态(包括函数的单调性与极值,函数图形的凹凸性与拐点,渐近线),最值应用题,利用洛必达法则求极限,以及导数在经济领域的应用,如"弹性"、"边际"等等。

常见题型有

1.求给定函数的导数或微分(包括高阶段导数),包括隐函数和由参数方程

确定的函数求导。

2.利用罗尔定理,拉格朗定理,拉格朗日中值定理,柯西中值定理证明有关命题和不等式,如"证明在开区间至少存在一点满足……",或讨论方程在给定区间内的根的个数等。

此类题的证明,经常要构造辅助函数,而辅助函数的构造技巧性较强,要求读者既能从题目所给条件进行分析推导逐步引出所需的辅助函数,也能从所需证明的结论(或其变形)出发"递推"出所要构造的辅函数,此外,在证明中还经常用到函数的单调性判断和连续数的介值定理等。

3.利用洛必达法则求七种未定型的极限。

4.几何、物理、经济等方面的最大值、最小值应用题,解这类问题,主要是确定目标函数和约束条件,判定所论区间。

推荐导数的心得体会精选二

随着科技日新月异的发展和电脑无孔不入的应用.高等数学课程作为一种数学工具的功能正在逐步缩减.但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解?我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如何通过数学建模转化为一个数学同题,除了必须具备许多综合的知识,还需要具备一定的分析推理能力,这种素质自然可以通过生活来积累,但如果能够通过象高等数学这样的课程作为载体来进行系统训练,将是事半功倍的。

以往对工科学生来讲,高等数学的教学比较偏重于计算方法的训练,例如,如何计算极限,计算导数,计算积分,通过熟练掌握计算方法来加深对概念的理解,这是学习高等数学的一条捷便之径。但是从二十一世纪更加需要创新人才的观点看,从高等数学的概念中直接去提炼一种分析推理能力及实际应用能力,将是更加重要的。(当然,在改革的力度还未到位时,由于教学要求及教材等原因.学习高等数学并不能仅偏重于概念,对基本的计算方法必须熟练地掌握。如今就如何学好高等数学的基本概念。提出一些拙见供同学参考。

1)从正反两个层面理解概念

我们观察一个物体,如果仅仅通过平视去进行,那么对这个物体的认识往往是局部的,甚至是扭曲的,只有从正视、俯视、侧视的多角度去观察与综合,方能得到物体正确的空间定位。观察事物尚且如此,要理解一个抽象的概念,如果只有单向的思维方法,肯定只能浅尝辄止.只有从正反两个方向去透视概念,才能较深地抓住概念中一些本质的东西。这里所说的正方向思维应该包含几层意思:一是概念的定义是如何叙述的,二是概念所尉带的条件是必要的.还是充分的?三是概念产生的实际背景是什么?这里所说的反方向思维又应该包含两层意思:一是对一个概念的否定是怎样表达的?二是如果错误的理解了概念中的一些条件会导致什么样的错误结果。

2)学与问

古人说.学起于思,思源于疑,这话道出了做学问的过程中发现问题提出问题的重要性。高等数学的讲课进程一般都比较快的,课堂上讲的内容不能完全听懂是正常的现象,同题在于听不懂看不懂的内容是随意放弃呢还是努力请教老师请教同学直到学懂为止。如果轻易放弃.时间一长就会失去学习的信心,所以一定要以锲而不舍的精神边学边问。不过这样的提问还只是被动的,主动的提问应该是自己在学习过程中去发现同题。如何才能

发现问题呢?首先要提倡自学,在自己预习教材(也锻炼了一种自学能力)的过程中很容易发现不懂的同题,带着同题再去听课就会有的放矢。其次是听课之后做习题之前要认真复习消化课上的内容,只要积极地开动脑筋,从中是会发现很多问题的,在这个较深层次上发现问题又去解决问题(可以通过同学与老师的帮助),那么分析问题的能力就会有一个质的提高。

3)做习题与想习题

学习数学,不做习题是绝对不行的.因为耐概念究竟理解与否检验的最后关口是习题。一道习题不会做或者做错了,肯定是某些概念投有消化好,带着习题再来复习理解概念,拄往会摩擦出新的思想火花。学习高等数学的过程中,我们不主张采用中学的题海战,但对每道习题不但要弄懂正确的解法,而且尽量要考虑能否有多种解法。这还不够,进一步的思考是一些似是而非的错误解法究竟错在哪里?必定是对概念理解的偏差才导致的错误结果.经过又一次正反两个层面的开掘.思考深入了,学习的兴趣也会逐步培育起来。

推荐导数的心得体会精选三

1、点式学习

数学知识由一系列的基本定义、基本定理、基本方法组成,这些基本的知识点两两结合,三两结合就能构成不同难度,不同层次的考题,但追根究底,若没有对这些小知识点透彻的学习是不可能漂亮求解复杂问题的。所谓“不积跬步无以至千里”就是道理所在。如何才能深刻理解这些知识点的内涵呢?

一般也需要分三步:一、这个点在讲什么?二、这个点揭示了什么?三、这个点如何使用?例如,中值定理里有一个拉格朗日中值定理,从以上三个层次理解就是:一、讲切线与两端点连线的问题;二、揭示了导数与函数的内在关系;三、可以用来沟通函数与导数,出现在不等式证明及中值定理证明题目中。

2、线式学习

在掌握好第一步单个知识点的学习后,就好比我们手里有有一把珠子,要想便于携带需要把这些散珠穿起来,这就是线式学习。那么这条穿珠子的线是什么呢?我认为应该是各章节之间的联系。至于如何找到这条线,其实不难,大家手头的教材的编排都是按照一定的逻辑关系进行的,我们只需深刻理解教材的编排方式就可以将珠子穿起来了。当然,每个人的水平又是不同的,有人理解的深刻,有人理解就浅见一些,不过,只要多下功夫,“读书百遍,其意自现”。

3、面式学习

过线式学习,我们已经把知识做成了一根根线,现在需要把这些线织起来。线与线之间的联系就需要站高一些来看了,各个章节是要解决什么问题,综合起来又是要解决什么问题,这需要较高的抽象综合能力,分析问题的能力。

例如,从整体上看高等数学,首先研究函数极限连续,那这是在说明高等数学研究的对象及使用的工具,以极限的手段研究连续函数;后续研究导数及其应用以及中值定理,这是进入一元函数微分学的,一元函数微分学学

导数的心得体会精选 导数的难点(九篇)

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?