电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

方程发展史的心得体会简短 方程的发展历程(八篇)

来源:互联网作者:editor2024-02-022

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。那么我们写心得体会要注意的内容有什么呢?以下是我帮大家整理的最新心得体会范文大全,希望能够帮助到大家,我们一起来看一看吧。

有关方程发展史的心得体会简短一

老方法:

x 4 = 20

x = 20-4

依据运算之间的关系:一个加数等于和减另一个加数。

新方法:

x 4 = 20

x 4-4=20-4

依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。

改革的原因(摘自教学参考书):

新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。

从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。

那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题? 在我的教学过程中真的出现了问题 。

1.无法解如a-x=b和a÷x=b此类的方程

新教材认为,利用等式基本性质解方程后,解象x a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与x÷a=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓“相比原来方法,思路更为统一”的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和a÷x=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而a÷x=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。

我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或a÷x=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x b=a或bx=a的方程。但我认为,这样的处理方法,有时更 会无法避免地直接和方程思想发生矛盾。

如“3千克梨比5千克桃子贵0.5元。梨每千克2.5元,桃子每千克多少元?”合理的做法应是“设桃子每千克x元”,从顺向思考,列出方程为“2.5×3-5x=0.5”。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成“5x 0.5=2.5×3”之类的方程。又如:课本第62页中的“爸爸比小明大28岁,小明х岁,爸爸40岁。”很多学生根据“爸爸比小明大28岁”列出40-х=28,可是无法求解,所以又转成х 28=40。

很明显,第二个方程是和方程思想的基本理念相违背的。我们知道,方程最大的意义,就是让未知数参与进式子,使考虑问题更加直接自然。为实现这个目标,很重要的一点,就是列式时应尽量顺向思考,以降低思考的难度。这是体现方程方法的优越性必然要求。事实上,如果学生能够列成“5x 0.5=2.5×3”“ х 28=40”那就说明他已经非常熟悉其中的数量关系了,此时,用算术方法即可,哪还有列方程来解的必要呢?我们又怎谈引导学生认识方程的优越性呢? 

我们不难看出,根据现实情境列方程解决问题,x当作减数、当作除数,应当是很常见、很必要的现象。要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。

2.解方程的书写过程太繁琐

教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。

因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了。

从这两个方面来看,小学里学习等式的基本性质,并运用它来解方程,在实际操作中,也存在许多的现实问题。那么,如果说用算术思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,那我们又如何是好呢?

有关方程发展史的心得体会简短二

很多时候,我们大人都喜欢用方程来解题,这固然是因为到了中学大量学习了各种各样的方程,一元一次,一元二次,二元一次等等,但还有一个更重要的原因就是方程对解题思路的解放,列算式解决实际问题时,解题思路常常迂回曲折,而他从根本上让学生脱离了繁琐的思路分析,而列方程解决实际问题,解题思路往往直截了当,降低了思维难度,它让学生从一个简单的思路——找等量关系来解题。所以说,这个单元的知识如何教好,从而让学生学好是非常重要的。

用字母表示数是学生学习代数初步知识的起步。在算术里,人们只对一些具体的、个别的数量关系进行研究,引入用字母表示数后,就可以表达、研究具有更普遍意义的数量关系。可以说,学习代数就是从学习用字母表示数开始的。

对小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃,而由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。而在老师们的教学实践中,由于在进行用方程解题时格式非常重要,因此往往老师们教学时都会特别强调格式。可是从学生的后续学习来看,我慢慢发现,其实在教学这一部分知识时,老师要注重学生对数量关系的理解,也就是说要加强对学生的用含字母的式子表示数量的训练,也就是写代数式的训练。因为这是列方程的基础。所以,在这里教师一定要向学生强调并反复练习用含有字母的式子表示数量,让学生明白以往学习的所有数量关系在用含有字母的式子表示数量中都能用到。如:原来有100元,用掉x元,一样的要用减法求还剩下多少钱,买了3个练习本,每个a元,一样的用乘法来求一共要多少钱。让学生在这样的大量的练习和强化中,知道含有字母的式子的数量关系和以前是一样的,只是现在所用的符号不一样,其实,从广义上来讲,字母是一种符号,数字也是一种符号。

方程是什么,教材中是这样说的,含有未知数的等式叫做方程。其实,这只是从方程的表现形式来给方程下定义。也就是说,从表象上来说,如果一个式子是一个等式,并且含有未知数,我们就说这个式子是方程。但是,从数学的本质上来说,方程的意义是什么呢?我们每个人都能够熟练地列方程解决问题,那么,在你列方程解决问题时,你每次抓住的核心是什么呢?是等量关系。所以,方程最本质的教学意义应是同一个量(或相等的量)用不同的'形式去表达。但很多时候,老师们在教学方程的意义时,往往只研究了方程的表面形式,也就是书上所说的:含有未知数的等式叫方程,所以,老师们一般都是从等式入手,让学生在认识等式的基础上引入未知数,然后告诉学生,象这样的含有未知数的等式叫方程。这样一节课教下来,学生除了会判断一个关系式是不是方程,还知道了什么呢?这样的学习对于后面的列方程解决问题真的有帮助吗?我想,每个人静下心来想想,应该都会有答案。

新教材对于解方程的安排是变动非常大的。以前我们是根据四则运算各部分之间的关系来解方程。一开始时,还不和学生说解方程,叫求未知数x。而现在的教材编排时是根据等式的性质来解,当然,在教材上并没有归纳出等式的性质,毕竟,在学生的小学阶段,只要让学生明白,在等式的两边同时加、减、乘和除以同一个数,等式仍然成立,这并不是完整意义上的等

方程发展史的心得体会简短 方程的发展历程(八篇)

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?