电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

高中数学大师讲座心得体会范文 高中数学大师讲座心得体会范文图片(八篇)

来源:互联网作者:editor2024-02-022

我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。我们如何才能写得一篇优质的心得体会呢?以下是小编帮大家整理的心得体会范文,欢迎大家借鉴与参考,希望对大家有所帮助。

对于高中数学大师讲座心得体会范文

认真学习马列主义毛泽东思想,积极参与到学校争优创先的活动中,处处以身作则,勇于开拓,积极进取,不怕困难,不怕挫折。平时,严格遵守学校的各项规章制度,按时上下班,积极参加学校组织的各项政治学习和活动,并认真做好笔记,认真学习新课程教学标准,学习其新的教学理念的同时,并钻研老教材,使自己能适应不断发展的教育新形势。在教学中,我始终能以满腔的热情去关心热爱每一位学生,不对学生体罚或变相体罚,使他们在一个充满爱的环境下学习成长。

二、教育教学能力方面

在20xx年的上半年我担任高一(1)班和(3)班的数学教学工作,下半年我担任高二(1)班和(3)班的数学教学工作作为中学数学教师,我深知基础教育的重要性,特别是近几年,在从应试教育向素质教育的转轨过程中,我更是注重学生素质的全面提高。平时,我认真备课,努力钻研教材,明确教学目的,突出教学重点,攻破教学难点,精心设计教学过程,采用生动活泼的教学手段,提高学生的学习兴趣。对(1)班和(3)班采取不同的教学方法,因材施教。对于班级中成绩较好的学生,我尽量出一些思考题,以便他们积极思维,开拓他们的解题思路,提高他们的解题能力,对于差生,我从不气馁,总是及时发现他们身上的闪光点,利用课余时间,耐心的帮他们辅导,不厌其烦地教,鼓励学生不懂就问,端正其学习态度,努力提高学生学习成绩。在教学中,我总是及时的向经验丰富的教师请教,学习其优秀的教学经验,取长补短,努力提高自身的业务水平。

三、创新评价,激励促进学生全面发展。

始终把评价作为全面考察学生的学习状况,激励学生的学习热情,促进学生全面发展的手段,也作为教师反思和改进教学的有力手段。

对学生的学习评价,既关注学生知识与技能的理解和掌握,更关注他们情感与态度的形成和发展;既关注学生数学学习的结果,更关注他们在学习过程中的变化和发展。抓基础知识的掌握,抓课堂作业的堂堂清,采用定性与定量相结合,定量采用等级制,定性采用评语的形式,更多地关注学生已经掌握了什么,获得了那些进步,具备了什么能力。使评价结果有利于树立学生学习数学的自信心,提高学生学习数学的兴趣,促进学生的发展。

四、抓实常规,保证教育教学任务全面完成。

坚持以教学为中心,强化管理,进一步规范教学行为,并力求常规与创新的有机结合,形成学生严肃、勤奋、求真、善问的良好学风。从点滴入手,了解学生的认知水平,查找资料,精心备课,努力创设宽松愉悦的学习氛围,激发兴趣,教给学生知识,培养了学生正确的学习态度,形成良好的学习习惯及方法,使学生学得有趣,学得实在,向40分钟要效益;扎扎实实做好常规工作,做好教学的每一件事,切实抓好单元过关及期中质量检测。

一份耕耘,一份收获。总之今年我的教学工作苦乐相伴。今后我将本着“勤学、善思、实干”的准则,一如既往,再接再励,把工作搞得更好。

五、在班主任工作方面

1、做好学生的思想工作,培养学生良好的道德品质,净化学生的心灵,努力培养德智体全面发展的人才。做好学生的思想工作从两方面入手,一是重视班会,开好班会;一是重视与学生的思想交流,多与学生谈心。重视班会,开好班会,为的是在班中形成正确的舆论导向,形成良好的班风学风,为学生提供一个良好的大环境,重视的是学生的共性。配合学校各项工作,我们班积极开展了许多有益于学生身心健康发展的活动,让学生在活动中明事理、长见识。高中的学生已经是十七八岁的人了,很多道理都明白,但自尊心也很强,直接的批评换回来的可能是思想的叛逆,利用班会课对学生进行思想教育的好处,就是避免单调重复的批评说教而引起学生的反感,容易为学生接受,能切实帮助学生澄清思想上的模糊认识,提高学生的思想境界。我开班会不一定要等一节完整的课,利用一些零碎的又不影响学科学习的时间开短小精干的班会也能取得良好的效果。不必长篇大论,班主任把及时发现的不良思想的苗头一针见血地指出来,对事不对人,进行警示性的引导教育,往往能把一些影响班风、学风的不良思想消灭在萌芽阶段。重视与学生的思想交流,多与学生谈心,注重的是学生的个性和因材施教。我常利用课余时间和学生促膝谈心,及时对学生进行针对性的教育。在这个时候,我就是他们的好朋友,尽量为他们排忧解难,也正因如此,我得到了班上学生的爱戴和信任。

2、加强班级管理,培养优秀的学风、班风,深入全面地了解学生,努力培养"团结协作,自强不息"的班集体。在这个学年里,我的班级管理工作是这样实施的:

一方面,我主要加大了对学生自治自理能力培养的力度,通过各种方式,既注意指导学生进行自我教育,让学生在自我意识的基础上产生进取心,逐渐形成良好的思想行为品质;又注意指导学生如何进行自我管理,培养他们多方面的能力,放手让他们自我设计、自我组织各种教育活动,在活动中把教育和娱乐融入一体;还注意培养学生的自我服务的能力,让学生学会规划、料理、调控自己,使自己在集体中成为班集体的建设者,而不是"包袱"。在这点上,特别要提一提的是班干部的选用,这是让学生自治的重要途径。班主任的管理代表的是学校的管理,不论班主任如何和颜悦色都带有不容质疑的权威性,也难免有不被理解和接受的时候,通过班干部的协调,往往能够取得意想不到的效果。班干部起的是协助班主任管理班级的作用,他们接受班主任的指导,又及时向班主任反馈班级情况和同学们的思想动态;他们分工管理班级的各项事务,同时又是一个团结合作的整体。选好班干部,不但有利于班级管理,而且有利于全体学生共同发展。培养学生担任班干部,是培养学生能力、提高学生素质的一种很有效的方法,如培养其组织能力、管理能力、社交能力、语言表达能力等,还可培养其关心集体、关心他人、乐于奉献、积极进取等优良的思想品质。多培养班干部有利于多数学生全面发展。通过班干部管理班级,让学生自治自理,却不等于班主任可以完全不理,这关系到班主任的引导、指导和调控问题。当学生对事情的理解是非不分明,对班级事务的处理欠妥当,不能形成正确的舆论导向、达成共识的时候,班主任就应该及时的给予引导和指导。实际上,班级的重大决策都应该由班主任来决定。要知道,班干部的阅历和能力在目前还是有限的,有些责任也是作为学生的他们所承担不了的。只有班主任做好宏观的调控,做好班级的带头人、领路人,把好方向关,才有带领学生不断前进不断发展,促进他们全面发展,健康成长。

另一方面,我有效地利用好每周五的班会课开展一些专题性的活动,例如,高中学生的责任和义务,学习经验交流会,意志品行的教育,如何做时间的主人,习惯养成教育等,这些活动大大地促进良好的学风、班风的形成。再一方面,我自己也以身作则,努力做学生的榜样,勤跟班,使班风正、学风浓。而我班在学校的各项管理评比中都取得较好的成绩,这又进一步鼓舞了同学们的士气,使班级管理工作向着健康的方向发展。

对于高中数学大师讲座心得体会范文

高中数学教学设计——函数的奇偶性

函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。 教学目标

1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。

2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。

3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。 任务分析

这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈r.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。 教学设计

一、问题情景

1、观察如下两图,思考并讨论以下问题:

(1)这两个函数图像有什么共同特征?

(2)相应的两个函数值对应表是如何体现这些特征的? 可以看到两个函数的图像都关于y轴对称。从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。

对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1)。事实上,对于r内任意的一个x,都有f(-x)=(-x)2=x2=f(x)。此时,称函数y=x2为偶函数。

2、观察函数f(x)=x和f(x)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。

22可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈r都有f(-x)=-f(x)。此时,称函数y=f(x)为奇函数。

二、建立模型

由上面的分析讨论引导学生建立奇函数、偶函数的定义 1.奇、偶函数的定义

如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数。如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数。

2、提出问题,组织学生讨论

(1)如果定义在r上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)

(2)奇、偶函数的图像有什么特征?

(奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)

三、解释应用 [例 题]

1、判断下列函数的奇偶性。

注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1]。

2、已知:定义在r上的函数f(x)是奇函数,当x0时,f(x)=x(1 x),求f(x)的表达式。

解:(1)任取x0,则-x0,∴f(-x)=-x(1-x),

而f(x)是奇函数,∴f(-x)=-f(x)。∴f(x)=x(1-x)。

(2)当x=0时,f(-0)=-f(0

高中数学大师讲座心得体会范文 高中数学大师讲座心得体会范文图片(八篇)

我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。我们如何...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?