数学人教教材培训心得体会总结 数学教材培训感悟(5篇)
当我们备受启迪时,常常可以将它们写成一篇心得体会,如此就可以提升我们写作能力了。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?下面是小编帮大家整理的心得体会范文大全,供大家参考借鉴,希望可以帮助到有需要的朋友。
描写数学人教教材培训心得体会总结一
教学目标
1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;
2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;
归纳——猜想——证明的数学研究方法;
3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点
重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;
难点:等比数列的性质的探索过程。
教学过程
教学过程:
1、 问题引入:
前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?
(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1 (n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)
2、新课:
1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。
师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?
师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。
公式的推导:(师生共同完成)
若设等比数列的公比为q和首项为a1,则有:
方法一:(累乘法)
3)等比数列的性质:
下面我们一起来研究一下等比数列的性质
通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。
问题4:如果{an}是一个等差数列,它有哪些性质?
(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:
3、例题巩固:
例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。
答案:1458或128。
例2、正项等比数列{an}中,a6·a15 a9·a12=30,则log15a1a2a3 …a20 =_ 10 ____.
例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?
(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)
1、 小结:
今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习
我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。
2、 作业:
p129:1,2,3
思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?
教学设计说明:
1、 教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。
2、 教学设计过程:本节课主要从以下几个方面展开:
1) 通过复习等差数列的定义,类比得出等比数列的定义;
2) 等比数列的通项公式的推导;
3) 等比数列的性质;
有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧
知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。
在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。
通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。
等比性质的研究是本节课的高潮,通过类比
关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。
描写数学人教教材培训心得体会总结二
科 目: 数 学
班 级: 三年级(3)班
制 定 人: 徐庶
教研组长审核签字:
学 校: 开发区桂林路小学
制定时间: 年 2 月 24 日
日照经济开发区教育局教研室编制
一、班级情况分析(具体指本班学生双基掌握程度、智力水平和学习态度、习惯等原有情况分析)
本班共有57名学生,其中男生26人,女生21人。通过上学期的教育与学习,学生的一些基本能力得到了很大的提升,已经初步养成了自己独立思考、动手、动脑正确学习习惯,对待学习的态度良好。但是有一少部分
学生过于活泼好动,纪律观念还不够强,无集体意识,缺乏合作精神,还有一部分学生缺乏积极主动地学习习惯需要教师和家长的督促才能完成学习任务。
二、本册教材分析(教材的地位、作用及重点、难点)
本册教材教学内容包括。除数是一位数的除法,两位数×两位数,小数的初步认识,位置与方向,面积,年,月,日,简单的数据分析和平均数,用数学解决问题,数学广角和数学实践活动。
本册教材根据学生所学知识和生活经验,安排了两个实践活动,让学生运用所知识解决问题,培养学生的数学意识和实践能力。
本册教材的重点是:除数是一位数的除法、两位数乘两位数、面积以及简单的数据分析和平均数。难点是培养学生分析问题,解决问题的能力以及应用数学的意识。
三、本学期教学目标(包括知识目标、能力目标、情感、态度、价值观)
1、会计算一位数除多位数的除法,两位数乘两位数的乘法,会进行估算。
2、会口算一位数除商是整十,整百,整千的数,两位数乘整十、百数。
3、初步认识小是数,会读会写小是数,会计算小数加法。
4、初步掌握数据分析和求平均数。
5、认识东,南,西,北,东南,西北,西南,东南,东北八个方向。
6、认识面积含义并会进行长方形、正方形的面积计算
7初步了解集合和等量代换的思想。形成发现生活中的数学意识。
四、教学措施
1、将笔算教学与解决问题教学有机结合。
2、多多提供关于空间与图形的丰富教材、资料。
3、根据学生已有的经验和知识基础,调整乘法口算的教学顺序。
4、结合有关内容加强估算意识与能力的培养。
5、注重实践探索,促进学生空间与图形的发展。
五、教科研课题
数学小课题研究
六、教学进度安排
周次 单元或章节内容 课时 本单元重点、难点
1 p2____
方向的辨别
2 9
3 10-16
商的位置,商的中间及末尾有零
4
5
18-24
零的除法。
5
6
25-31
6 32-38
数据的分析和求平均数。
7 39-45
8 46-53
年,月,日的认识及24时计算
9 54-60
时法的应用。
10 61-66
笔算两位数×两位数。
11 67-73
面积单位的换算及面积的计算
12 74-79
13 80-85
14 86-91
小数的意义及小数加法。
15 92-98
16 99-105
数量关系的分析及两步计算应用题
17 106-111
18 112-120
19 复习
20 复习
21 综合评价
22
教 导 处 审 核 意 见
教导主任签名: 郑涵
2010 年 3 月 10 日
描写数学人教教材培训心得体会总结三
“四则运算”是人教版小学四年级数学下册第一单元的资料,四则运算是贯穿于小学数学教学全部过程。其资料占小学教学知识的主要位置,可见计算潜力的培养在数学教学过程中起到举足轻重的作用。我在这一单元的教学中,充分利用教材带给的生活素材,把解决问题与四则混合运算顺序有机结合起来,将探求解题思路与理解运算顺序有机结合起来,让学生在经历解决问题的过程中明确先求什么,用什么方法计算;再求什么,又用什么方法计算;最后求什么,用什么方
法计算。感受混合运算顺序的必要性,掌握混合运算顺序。
在教学过程中我主要有以下几点体会:
1、对四则运算顺序的理解
透过学习学生基本能记住掌握四则运算的基本顺序,即先括号内,后括号外,先乘除后加减,单一加减或单一乘除要从左到右的顺序计算,学生虽说能记住,但在实际的练习中出现了以下的问题或者说是误解应值得教师注意。
(1)对“先”字的理解,我发此刻很多学生的练习中出现误解现象,他们认为先算的就就应写在前面,如计算12 (13-4)-6就会这样些=9 12-6把先算的括号写在前面,还如12 5×6-15就会这样写=30 12-15,打乱运算的顺序。
(2)在理解“先乘除,后加减”时误认为要先算乘法后算除法,先算加法后算减法,如计算12÷3×2写成=12÷6=2,计算12-3 6就写成=12-9=3。而实际所谓先乘除后加减是指乘除哪种运算法则在前九先算哪种,加减也是。
以上两点对“先”字的理解先算出现的误解现象值得教师注意纠正指导。
2、很多学生在解答如“326与290的差去乘18与24的和,积是多少?”一类的问题时,对“与”、“和”两个字的含义理解出现误解,个性是“和”的含义。在学生的练习中我发现很多学生出现错误,不理解其意思导致出现错误。“和”在题目中是表示连接两个数字的关系的连词使用还是表示运算法则中的加法来使用,老师必须要给学生将清,引导学生区别,正确的理解含义并写出正确的四则余混合算式。
3、让学生用数学语言把算式说出来。(如x除以a减b的差。)这也为学生对文字题的理解打下了基础。
4、遇到学生错误的典型例题时,进行错误的辨析,让学生知其所以然。使学生在经历
探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两三步计算的方法解决一些实际问题。
描写数学人教教材培训心得体会总结四
教学目标
1.理解并掌握除数是整数的小数除法的计算方法,能正确计算除数是整数的小数除法。
2.培养学生的分析能力和类推能力。
3.体验所学知识与现实生活的联系,能应用所学知识解决生活中简单的问题,从中获得价值体验。
教学重难点
教学重点:理解并掌握除数是整数的小数除法的计算方法。
教学难点:理解商的小数点定位问题。
教学工具
ppt课件
教学过程
一、复习引入
1.填空:(ppt课件)
2.(ppt课件出示)
(1)引导学生列式:224÷4
(2)为什么这样列式?(路程÷时间=速度)
(3)说一说:224÷4这道题是怎样计算的?(教师板演)
【设计意图】通过复习整数除法,唤醒学生对整数除法计算方法和计算步骤的回忆,为新知的教学打好基础。
二、探究新知
(一)教学例1
1.出示例1,引导理解题意。(ppt课件演示。)
(1)题目中告诉了我们什么?(坚持晨练可以锻炼身体,王鹏坚持晨练,他计划4周跑步22.4 km。)
(2)题目中要我们求什么?(按计划他平均每周应跑多少千米?)
2.尝试列式,分析数量关系。
(1)要求“他平均每周应跑多少千米”,应该怎样列式?(学生口头列式,教师板书或ppt课件演示:22.4÷4。)
(2)引导思考:为什么用“22.4÷4”?(路程÷时间=速度)
3.揭示新课,感受学习价值。
(1)请同学们观察这道除法算式,和我们前面复习的除法计算有什么不同?(除数还是整数,但被除数是小数。)
(2)揭示课题:看来,在实际生活中常常遇到需要用小数除法计算的问题,这节课我们就来研究新的课题──除数是整数的小数除法。
(3)板书课题:除数是整数的小数除法。
4.提出问题,自主思考算法。
(1)提出问题:我们已经会计算整数除法,那想一想,被除数是小数的除法该怎样计算呢?
(2)学生先独立思考,再在小组里交流自己的想法。(教师巡视,了解学生思维活动,参与小组交流,给予适当指导。)
5.教师引导,交流不同算法。
(1)我们已经会计算整数除法,在不改变商的大小的前提下,怎样把小数变成整数呢?谁来说一说你的想法?
(2)指名学生回答。(教师ppt课件演示。)
(3)我们小数除法还可以列竖式计算。下面我们就一起来探讨列竖式计算小数除法的方法。
(4)指导学生列出除法竖式。(教师板书)
6.交流两种算法和感受:
引导学生比较列竖式计算和将22.4 km改写成22 400m计算的结果,提问:这两种算法的结果相同吗?(相同)哪种算法比较简便?(算法二计算过程比较麻烦,算法一比较简便。)
7、算一算,比一比。
(1)42÷3= 4.2÷3=
(2)学生独立计算,教师巡视。
(3)教师ppt课件演示。
(4)这两道题有哪些相同点和不同点?学生讨论,交流。
(相同点:整数除以整数与小数除以整数计算方法相同;不同点:小数除以整数要把商的小数点与被除数的小数点对齐。)
【设计意图】例1的教学是本节课的重点、难点所在,通过例1的教学要使学生理解并掌握除数是整数的小数除法的计算方法,要理解商的小数点如何定位。在本环节的教学中,先让学生结合具体情境,在解决实际问题中引出计算问题,感受学习除数是整数的小数除法的必要性。在解决计算问题时,教师先放手学生自主探索计算方法,再引导学生用已有知识和经验解释竖式计算过程,结合数的含义理解商的小数点要和被除数的小数点对齐的道理,理解除数是整数的小数除法的一般计算方法,为学生下一环节的学习做好充分的铺垫。
(二)教学例2
1.出示例2。(ppt课件演示。)
2.引导学生理解题意,列出算式。(教师ppt课件演示:28÷16)
3.教师板演竖式计算过程,让学生明确算理和算法。(教师板书)
(1)除到被除数的末尾还有余数时,为什么可以添0继续除?
(2)“120”表示120个()分之一?除得的7为什么写在十分位上?
(3)“80”表示80个()分之一?除得的5为什么写在百分位上?
4.计算除数是整数的小数除法要注意什么?
(1)商的小数点要和被除数的小数点对齐;
(2)如果有余数,要添0再除。
(三)教学例3
1.出示例3。(ppt课件演示。)
2.引导学生理解题意,列出算式。(教师ppt课件演示:5.6÷7)
3.引导学生观察被除数和除数有什么特点?(被除数比除数小);商会出现什么情况?怎样商?(不够商1,用0占位)
4.让学生把题补充完整。
5.引导学生自己尝试验算。
(1)引导:要检验小数除法的计算结果是否正确,可以怎么办?
(2)学生自主验算。
(3)教师板演。
【设计意图】例2和例3是除数是整数的小数除法中的两种特殊情况,例2是除到被除数的末尾仍有余数,需要添0继续除;例3是被除数比除数小,整数部分不够商1。在例2、例3的教学中,重点关注学生的数学思维发展,放手让学生探讨、交流,在解释每步计算的含义中找到解决问题的方法,在相互交流中强化对算理和算法的深入理解。通过引导学生自主验算,既帮助学生加深对乘除法之间关系的理解,又强化学生验算的意识和习惯。
三、智慧城堡
1、下面各题的商哪些是小于1的?在括号里画“√”
5.04÷6 76.5÷45 45÷36 0.84÷28
( ) ( ) ( ) ( )
(1)引导学生判断。
(2)引导学生想一想,什么情况下得到的商比1小?
2、
(1)引导学生判断对错。
(2)这道题的7应该商在哪位上?
3、
(1)引导学生理解题意。
(2)引导学生根据“一共花的钱÷分钟数=每分钟花的钱”的数量关系列式。
(3)学生列竖式计算,然后展台展示学生做题情况。
四、我的收获是……
引导学生说出这节课的收获。
(1) 按整数除法的方法去除。
(2) 商的小数点要和被除数的小数点对齐。
(3) 整数不够除,商0,点上小数点。如果有余数,要添0再除。
描写数学人教教材培训心得体会总结五
本册教学内容有:第一单元万以内数的认识;第二单元千米、分米、毫米的认识;第三单元万以内数的加减法(一);第四单元图形与拼组;第五单元万以内数的加减法(二);第六单元混合运算;第七单元统计;第八单元两、三位数乘一位数;第九单元时、分、秒的认识;第十单元图形的周长;第十一单元总复习。
1、数与代数:
①、结合具体情境,理解万以内数的意义,能认、读、写万以内的数,能说出各数的名称,识别各数位上数字的意义。
②、结合具体情境,进一步理解运算的意义,会口算百以内加减法、能计算三位数的加减法、两三位乘一位数的乘法及两步的加减、乘加、乘减混合运算。结合现实素材进行估算,并解释估算的过程。
③、能正确辨认钟面上指示的时刻,认识时、分、秒,了解它们之间的关系,并进行简单的换算。
2、空间与图形:
①、通过观察操作,能用自己的语言描述长方形、正方形的特征,初步认识五边形、六边形。
②、结合生活实际,体会千米,知道分米、毫米,能恰当地选择长度单位,并能进行简单的单位换算,会估测、测量一些物体的长度。
③、指出并测量具体图形的周长,探索并掌握长方形、正方形的周长公式。
3、统计与概率:
①、能用合适的方法收集整理数据。
②、在具体的统计活动中,掌握分段统计的方法。
4、实践与综合运用:
①、加深对万以内数的认识及长度单位的认识。
②、加深对统计意义的理解,巩固分段统计的方法。
本班41名学生。在经过了一年半的数学学习后,基本知识、技能方面基本上已经达到学习的目标,对学习数学有着一定的兴趣,乐于参与到学习活动中去。特别是一些动手操作、需要合作完成的学习内容都比较感兴趣。但是在遇到思考深度较难的问题时,有畏缩情绪。虽然在上学期期末测试中孩子的成绩都不错,但是成绩不能代表他学习数学的所有情况,只有在课堂和数学学习的活动中,才能充分的体现一个孩子学习的真实状况。因此对这些学生,我应该更多关注的是使已经基本形成的兴趣再接再厉的保持,并逐步让学生在思维中成功体验所获得的乐趣。
1、本册的数学重点是表内除法和万以内数的认识。
表内除法是学习多位数除法的基础。因为任何一个多位数除法,在计算时都要分成若干个一位数或两位数除以一位数,因此,表内除法同表内乘法一样,是小学生需要掌握的基本技能之一,必须达到计算正确、迅速。
万以内数的认识,使学生认数的范围扩大到四位。这是学习读、写多位数的基础。也是学生进一步学习认识数的重要基础知识。这部分内容也是培养学生的数感的重要素材,通过教学让学生感受大数与他人交流,逐步形成良好的数感。
2、本册的教学难点是用数学解决问题。
解决问题中在学习了一些数与计算知识后,结合现实生活的具体情境,使学生初步理解数学问题的基本含义,让学生用所学的计算知识解决一些简单的实际问题初步培养学生在实际生活中发现问题、提出问题、解决问题的能力。这部分内容对于实现培养学生解决问题的能力的教学目标,有着十分重要的意义。
(一)通过正面引导使学生树立明确学习目的,端正学习态度,树立学习榜样,使学生学有榜样。
(二)讲练结合,改进教法,坚持读写结合原则,一课一练,一单元一测试。掌握学生实际情况,补救有效措施。
(三)注意学法指导,培养自学能力。
(四)做好查缺补漏工作,努力做到学新、温故和补漏结合。
(五)精心备课,因材施教。
(六)发挥家长配合作用,互通情报,有目的的帮助学生不断进步。
(七)树立学习标兵,以好帮差,在扶好优生的同时,重点培养中等生,辅导好学困生。
数学人教教材培训心得体会总结 数学教材培训感悟(5篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。