电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

数学情境问题心得体会总结 情境数学反思(四篇)

来源:互联网作者:editor2024-01-314

从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。那么心得体会该怎么写?想必这让大家都很苦恼吧。以下是小编帮大家整理的心得体会范文,欢迎大家借鉴与参考,希望对大家有所帮助。

描写数学情境问题心得体会总结

2用于直角三角形中的相关计算

3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2 股2=弦2

亦即:

a2 b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32 42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。

在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2 股2)(1/2)

即:

c=(a2 b2)(1/2)

定理:

如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方 b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。

如果三角形的三条边a,b,c满足a^2 b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3 4*4=x*x,x=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)

来源:

毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

描写数学情境问题心得体会总结

新课程对数学教学要求的一个最突出的特点是遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型的“做数学”的过程。与此相对应的,新教材增添了一些实效性、趣味性较强的,有助于提高学生观察、分析、应用能力的章节,也给教师提供了设计的空间。但教材中毕竟还有许多一直就有的“传统章节”,与实际生活联系并不十分密切,属于抽象的纯数学。对于这样的内容如何处理,才能使之符合新课程所倡导的教学理念?这需要我们研究新理念,在教学中体现新理念,采用新方法,避免用新书却走老路的现象。当然,这对教师来说,难度也是比较大的。

“合并同类项”这一知识点是整式部分的核心,因为它是本章重点“整式加减”的基础。这样一个抽象的“老”知识,如何设计成适合学生参与、讨论,满足学生知识、能力、情感等方面要求的课堂呢?我是这样设计和思考的:

一、认识“同类项”

我首先设计了学生非常熟悉的一个生活场景:桌面上非常凌乱的课桌,问学生如何整理

数学情境问题心得体会总结 情境数学反思(四篇)

从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。那么心得体会...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?