平行与相交优质课心得体会及收获 相交与平行教学反思(6篇)
我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。我们想要好好写一篇心得体会,可是却无从下手吗?那么下面我就给大家讲一讲心得体会怎么写才比较好,我们一起来看一看吧。
关于平行与相交优质课心得体会及收获一
虽说学生已经掌握了平行四边形的特征和长方形面积的计算方法,也已经有了“利用数方格推导长方形面积计算方法”的这一活动经验。但是长方形面积的计算是三年级的时候学的,四年级没有涉及到图形面积的计算,只是认识了平行四边形,如果在不看书的情况下,引入新课教学,学生很难想到用数方格的方法去求面积。所以学生已经淡忘了“数方格求面积”的这种方法。再加上小学生的空间想象力不够丰富,这都对平行四边形面积计算公式的推导造成一定的困难。
为了有效地突出重点,突破难点,从学生已有的知识水平和认识规律出发,让学生在“复习旧知---大胆猜想---推理判断---动手实践---直观验证”的学习过程中,启发学生用“转化”的思想,动手操作,推导归纳出平行四边形面积计算的公式。充分发挥直观教具教学在知识形成过程中的积极作用, 从而使学生从感性认识上升到理性认识,最终体会到知识的由来,引发学生主动探索问题的积极态度,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高。
布卢姆认为,在影响信息的所有变量中,认知前提占百分之五十。长方形面积计算是平行四边形面积计算的生长点,是认知的前提。为架起新旧知识之间的桥梁,我设计了几个问题让学生回忆长方形面积是怎么求的。想一想我们三年级的时候是怎么推导出公式来的。然后直接出示平行四边形的图形,让学生思考平行四边形的面积可以怎么求,并由此导入新课。
自主探究是新课程改革的最大亮点,也是课堂教学的难点。 它难在学生在探究之前对结果一无所知,必须先进行猜想,然后才能实验验证。
1、大胆猜想,展示自己观点。直接向学生呈现问题:展开你的想象猜一猜,平行四边形的面积该怎样计算呢?并以此作为展开教学的依据引起学生探究的欲望,开展下面的探索活动。
2、推理判断,展示真实思维。我采用了先证伪,再证真的过程。(30 20)×2是不是平行四边形的面积呢?大部分学生能够判断出这样算出的是平行四边形的周长,而不是面积。那么30×20也就是底边乘邻边是不是平行四边形的面积呢?学生根据已有知识经验,平行四边形一拉变成长方形,认为30×20就是平行四边形的面积,通过演示把平行四边形拉成长方形,观察发现拉成的长方形面积变大了,30×20是拉成的长方形面积,而不是平行四边形的面积。我接着追问:你从哪里看到面积变了,请你上来画一画,指一指。第二种猜想也被排除了。那30×12也就是底乘高可以吗?为什么?这时学生看出了把右边的三角形剪下来补在左边,把平行四边形转化成长方形,底乘高对了。为了突破难点,这时我设计了一个疑问:刚才把平行四边形拉成长方形,底乘邻边算出的不是平行四边形的面积。现在也是变成长方形,底乘高算出平行四边形面积,为什么就对了呢?至此错误得以澄清,正确算法得以掌握,割补转化意识已形成。下面把平行四边形割补转化成长方形已顺理成章了。
3、动手实践,推导面积公式。 由于前面推理过程,这一环节我完全放手于学生。学生四人一组分工合作,动手剪一剪、拼一拼、把平行四边形转化成长方形,来推导平行四边形的面积计算,为了突破第二个难点我设计了这样的三个思考引导:(1)、拼出的长方形和原来的平行四边形比,面积变大了吗?(2)、拼成的长方形的长和宽与平行四边形的底和高有什么关系?(3)、根据长方形的面积计算公式推导出平行四边形面积计算公式。 接着学生汇报,形成板书,最后介绍字母公式。在这一环节中,学生通过动手操作,体验了图形的平移,转化的数学思想方法,促使空间观念进一步发展。同时也培养了学生语言组织能力和概括能力。
4、凑数方格,直观验证结论。我尊重教材编写意图:让学生经历数方格的方法体验凑数的过程。在得到平行四边形面积计算公式之后,我让学生用数方格的方法验证平行四边形的面积。通过方格直观验证,平行四边形面积是底×高。
实践是认识的源泉,也是认识的目的和归宿。为了能让学生熟练掌握、灵活运用新知,练习设计由基本练习、判断选择、变式练习、拓展练习、动手实践组成。
1、基本练习,计算不同形状平行四边形的面积。 (通过练习,巩固新知识,加深对新知识的理解.)
2、判断选择提升练习,巩固平行四边形面积公式。
3、变式练习 ,出示一块近似平行四边形的菜地,让学生求出它的面积,学生首先必须把它想象成平行四边形,然后提出要量出它的底和高,这时我就提供给他们两组数据(底和高不对应)以引起学生的争议,让他们发表自己不同的见解,最后形成共识:要求平行四边形的面积必须要有相对应的底和高相乘。
4、拓展练习, 设计同底等高的多个平行四边形让学生判断它们的面积是否相等。通过猜测、讨论、交流、验证得出同底等高的平行四边形不管它的形状是什么样的,它们的面积总是相等的。
5、动手实践,让学生测量自带的平行四边形并求出其面积。一方面培养学生解决实际问题的能力和创新思维,另一方面加深学生对平行四边形计算公式的理解, 同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣、有用的数学,从而激发学生的学习兴趣。
整个习题设计,虽然题量不大,但涵盖了本节课所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了学生思考、发展了学生思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
学生只有学会不断的反思,才能够不断的进步,在课末我组织学生畅谈在这节课中学到了什么?对本节课的学习有什么体会?本节课的问题解决主要采用了什么方法?还有别的方法吗?本节课的学习对你的生活有什么影响?……最后我还引导学生运用转化的方法回去后尝试着去探究三角形或梯形面积计算公式的推导。
总之,本节课立足 “基本”,注重“过程”,努力为学生创设民主、和谐、宽松、愉悦的学习氛围,使教学过程成为一个不断创设问题情境,和探索解决问题的过程,努力为学生提供充分的活动条件和活动空间,使学生的数学学习成为一个不断感受、体验、探索、交流和应用数学的过程。始终把学生看作学习的主人,达到培养和提高学生数学素养的目的。
关于平行与相交优质课心得体会及收获二
教学内容:
我说课的内容是人教版义务教育课程标准实验教科书五年级数学上册第80—81页的内容“平行四边形的面积”。平行四边形的面积计算是在学生掌握了这个图形的特征以及长方形面积计算的基础上学习的。也是今后学习其它图形的基础。平行四边形面积的计算是先借助数方格的方法,猜测平行四边形的面积;再引导学生运用“割补法”将平行四边形转化成一个学过的长方形,推导出平行四边形的面积计算公式,在这个过程中渗透“转化”思想。
教学目标:
知识与技能目标:理解并掌握平行四边形面积计算公式。
过程与方法目标:能够运用公式解决实际问题。
情感态度与价值观:通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。
教学重难点:
(1)教学重点:平行四边形面积计算方式的推导和运用。
(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。
这节课,我将采用“自主实践,合作交流”的教学方法,通过演示与实践操作,激发学生参与学习的积极性,让学生在求知的学习状态中展示个性。
本课的学法有:自主讨论、小组合作、实际操作、观察想象等学习方法,使学生亲自探索,主动发现,让他们学的轻松,学的快乐,学的愉快!
教具准备:平行四边形卡片、长方形卡片、格子纸、剪刀等。
本节课我以“四环节”教学法为宗旨,从以下四方面来阐述教学程序:
(1)创设情景、质疑自探
师:兔妈妈在山上开垦了两块地,为了培养孩子艰苦奋斗,吃苦耐劳的精神,决定把地交给两只兔宝宝来种。〔课件出示两块地。〕老大说:“我是哥哥,我来种大的。可这两块地到底哪块大呢?”你能帮它解决这个问题吗?
师:长方形的面积大家会求,那平行四边形的面积呢?这节课我们就来研究这个问题。揭示课题并板书“平行四边形的面积”。
〔设计意图:兴趣是学生最好的老师。通过创设情境使学生感受到数学无处不在,感受数学的魅力。通过质疑“这两块地到底哪块大呢?”使学生产生求知的欲望,激发学生积极探索的兴趣。〕
(2)分组学习、合作交流
1、用数方格〔即数面积单位〕的方法来计算平行四边形的面积。
师:怎样知道平行四边形的面积呢?学生可能会说亲自量量、摆摆、数数,引出数方格的方法。
①课件出示方格图和表格并说明要求(一个方格代表1平方米,不满一个按半格计算),学生独立数方格和填表。
②认真观察,探索发现。
为了让学生认真观察表格提出问题:
师:“你觉得平行四边形的面积可能会怎样求?”
引出猜测:平行四边形的面积=底×高
〔设计意图:通过让学生用数一数、填一填、说一说建立平行四边形与长方形的联系,同时培养学生敢于联想,大胆猜测的能力,也为下一步探索平行四边形面积的计算方法提供思路。〕
2、渗透“转化”思想引入割补法。
①引导学生独立思考,寻求验证方法。
师:猜测并不代表结论。通过刚才的方法我们猜测平行四边形的面积=底×高,是否成立?我们来验证一下。不数方格,能不能计算平行四边形的面积呢?能不能把它转化成学过的图形呢?给学生留出思考的时间。
②动手操作〔先让学生自己动手剪一剪、拼一拼,再四人小组交流剪、拼的过程,并求出平行四边形的面积。〕
③学生演示剪、拼的过程。〔课件展示两种剪法〕
展示之后问:“为什么要沿着高剪开呢?”使学生明白只有沿着高剪,才能拼成长方形。
④建立联系,推导公式。
提出问题:
师:现在会求平行四边形的面积吗?怎样求?为什么?
我会对学生的回答给予肯定:“你们真棒,都会用‘转化’的思想了。”
学生可能会说根据长方形的面积=长×宽,板书公式。
追问:今后所有的平行四边形都需要割补成长方形吗?如一块草坪不能割补怎么办?根据刚才转化的过程你能发现点什么?
学生思考,若有困难可以四人小组讨论。根据汇报板书:
长方形的面积=长×宽
平行四边形的面积=底×高
〔设计意图:这样一系列地追问更迫使学生独立思考,发现平行四边形与转化后的长方形的关系。学生的叙述也能帮助学生深化理解知识的形成过程。〕
(3)精讲点拨、巩固训练
①在刚才学生思考剪拼的过程中我及时点拨:要计算一个平行四边形的面积,必须知道它的什么?
〔底和高〕
②学生自学平行四边形面积的字母形式,根据学生的汇报板书:s=ah
③分层运用新知识,逐步理解内化
对新知识需要及时组织学生巩固运用,才能得到理解内化的效果。我本着“重基础、验能力、拓思维、联系生活”的原则,安排了四组形式的练习。
基础练习:
出示的几个平行四边形位置各不相同,这样可使学生加深对平行四边形相应底和高的认识,巩固其面积计算方法的应用。
趣味练习:
趣味题的设计,进一步巩固了平行四边形面积方法的使用,同时开拓了学生对知识理解的视野。
实践练习:
教学来源于生活,生活中处处有数学。这道实践练习,在学习加强知识运用的过程中,使学生体验到生活中处处有数学的快乐。
提升练习:
提升练习既考查了学生对理解知识的准确性和严密性,又考察了他们的想象力及空间观念。
(4)检测反馈、拓展运用
1、全课小结:通过这节课的学习,谁愿意和大家一起来分享你的收获?
〔设计意图:通过让学生谈收获来培养学生对知识的归纳,整理、概括的能力,也培养了学生的语言表达能力;还包括对‘转化’这一思想方法的运用理解,这是数学由‘双基’转化‘四基’的具体体现。〕
2、拓展运用:
为了引起学生的兴趣,我准备了一个可活动的长方形框架,如果把它拉成一个平行四边形,周长和面积有变化吗?怎样变化?如果任意拉这个平行四边形,你会发现什么?什么情况下它的面积最大?
〔设计意图:通过这个拓展题目使学生体会平行四边形面积的变化,从而理
平行与相交优质课心得体会及收获 相交与平行教学反思(6篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。