高中数学名师心得体会精选 高中优秀数学老师教学感悟(四篇)
心中有不少心得体会时,不如来好好地做个总结,写一篇心得体会,如此可以一直更新迭代自己的想法。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会接下来我就给大家介绍一下如何才能写好一篇心得体会吧,我们一起来看一看吧。
主题高中数学名师心得体会精选一
《2.1空间点、直线与平面之间的位置关系》
科 目
高中数学
教学时间
1课时
学习者分析
通过第一章《空间几何体》的学习,学生对于立体几何已经有了初步的认识,能够识别棱柱、棱锥、棱台、圆柱、圆锥、圆台、球,并理解它们的几何特征。但是这种理解还只是建立在观察、感知的基础上的,对于原理学生是不明确的,所以学生此时有很强的求知欲,急于想搞清楚为什么;同时学生经过高中一年的学习,已经具备了一定的逻辑推理能力,只是缺乏训练,不够严密,不够清晰;有一定的自主探究和合作学习的能力,但有待提高,并愿意动手并参与分组讨论。
教学目标
一、知识与技能
1.理解空间点、直线、平面的概念,知道空间点、直线、平面之间存在什么样的关系;
2.记忆三公理三推论,能够用简单的语言概括三公理三推论,会用图形表示三公理三推论,并将其转化成数学符号语言;
3. 明确三公理三推论的功能,掌握使用三公理三推论解决立体几何问题的方法。
二、过程与方法
1.通过自己动手制作模型,直观地感知空间点、直线与平面之间的位置关系,以及三公理三推论;
2. 通过思考、讨论,发现三公理三推论的条件和结论;
3.通过例题的训练,进一步理解三公理三推论,明确三公理三推论的功能。
三、情感态度与价值观
1.通过操作、观察、讨论培养对立体几何的兴趣,建立合作的意识;
2.感受立体几何逻辑体系的严密性,培养学生细心的学习品质。
教学重点、难点
1.理解三公理三推论的概念及其内涵;
2.使用三公理三推论解决立体几何问题。
教学资源
(1)每位同学准备两张硬纸板,其中一张中间用小刀划条缝,铅笔三根;
(2)教师自制的多媒体课件。
《2.1空间点、直线与平面之间的位置关系》教学过程的描述
教学活动1
一、导入新课
1. 回忆构成平面图形的基本元素:点、直线。①两者都是最原始的概念,点没有大小、面积、厚度,直线是向两侧无限延伸的;②点用大写英文字母表示,直线用小写英文字母表示;③ 如果将点看作元素,则直线是一系列点构成的集合,所以点在直线上记作,点不在直线上记作;
2. 提出问题:构成空间几何体有哪些基本元素?(大屏幕出示棱柱、棱锥、棱台)学生很快得到答案:点、直线、平面。
3. 引入课题:什么是平面?点、直线、平面之间有什么样的位置关系?平面有什么性质?这就是我们这堂课要研究的问题。
教学活动2
二、观察操作,合作探究
1. 理解平面的概念
平面也是一个最原始的概念,是向四周无限延伸的,没有边界。一般用希腊字母、、,…表示平面,或者记为平面abc,平面abcd等等。
2. 明确空间点、直线、平面之间存在的位置关系
①点与直线;②点与平面;③直线与平面。
3. 探究平面的性质
⑴ 公理一
① 学生操作,研究如何将铅笔放置到硬纸板内
问题一:铅笔与硬纸板只有一个公共点可以么?
问题二:要将铅笔放置到硬纸板内至少需要几个公共点?
学生通过操作,体会到要将铅笔放置到硬纸板内,只需将铅笔上两点放置到硬纸板内。
② 抽象出公理一
问题一:如何用图形表示公理一?
问题二:要求学生将公理一表示成数学符号的形式;
问题三:公理一有什么功能?
③ 动画演示公理一
⑵ 公理二
① 学生操作,研究过空间中三点能确定几个平面
问题一:若三点共线,能确定几个平面?
问题二:要确定一个平面,需要三点满足什么条件?
学生通过操作,体会公理二所表达的含义。
② 抽象出公理二
问题一:如何用图形表示公理二?
问题二:要求学生将公理二表示成数学符号的形式;
问题三:还能根据什么条件确定一个平面?引出三推论。
问题四:公理二及三推论有什么功能?
③ 动画演示公理二及三推论
⑶ 公理三
① 学生操作,展示两个平面只有一个公共点
问题一:两个平面真的只有一个公共点么?
问题二:这个公共点与这条公共直线有什么关系?
学生通过操作,体会公理三所表达的含义。
② 抽象出公理三
问题一:如何用图形表示公理三?
问题二:要求学生将公理三表示成数学符号的形式;
问题三:公理三有什么功能?
③ 动画演示公理三
教学活动3
三、归纳总结,加深理解
⒈ 平面具有无限延展性;
⒉ 公理一有什么功能?条件是什么?
⒊ 公理二有什么功能?条件是什么?
⒋ 公理三有什么功能?条件是什么?
教学活动4
四、布置作业,课外研讨
⒈ 课后练习p43:1、2、3、4;
⒉ 平面几何中证明平行四边形有哪些定理?这些定理在空间中能否成立?说明理由。
主题高中数学名师心得体会精选二
一、学生的基本情况分析:
高三十个理科班,总人数462人。相当多的同学对基础知识掌握较差,学习习惯不太好,学习数学的气氛不太浓,学习不够刻苦,除两个奥赛班外,其余各班几乎没有尖子生,且各班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,培优辅差任务非常重;学生对数学学习普遍存在困难,且部分学生学习主动性不强,习惯较差,复习任务很艰巨。
二、复习指导思想
以现代教育理论,课程标准和考试指导纲要为指导,全面贯彻党的教育方针,深化教育改革,积极实施和推进素质教育;以基本知识、基本技能、基本思想和基本方法为基础,夯实基础,突出重点,突破难点,完善体系,构筑知识网络;以课堂教学为重点,结合知识与能力要求及学生实际,采用小步子、递进式教学模式,科学安排教学内容与教学难度,改革教学方法,提高课堂教学效益;以检查落实为切入口,不走过场,抓好落实,收到实效;以培优辅差为特色,让优生更优,让有弱科的学生克服瓶颈与木桶现象的不足,脱颖而出;争取本学年高三数学教学上一个新台阶。
三、教学目的要求
第一轮为系统复习,时间为第一学期,大约在三月初结束。此轮要求突出知识结构,扎实打好基础知识,全面落实考点,要做到每个知识点,方法点,能力点无一遗漏。在此基础上,注意各部分知识点在各自发展过程中的纵向联系,以及各个部分之间的横向联系,理清脉络,抓住知识主干,构建知识网络。在教学中重点抓好各中通性、通法以及常规方法的复习,是学生形成一些最基本的数学意识,掌握一些最基本的数学方法。同时加强章、节知识过关,注重训练的规范性,思考的严密性,有意识进行一定的综合训练,先小综合再大综合,适当地提升学生综合运用能力。
第二轮为专题复习与综合考试相结合,是在前一阶段基础上的深化与提高,时间安排在第二学期的3月(中,下)、4月、5月初。要精选专题,紧扣高考内容,抓紧高考热点与重点,授课时脚踏实地,讲透内容,重点在沟通数学各知识体系之间的内在联系,提高综合运用数学知识和方法解决问题的能力;加强针对性训练与测评,查漏补缺,既提高解决综合题的分析与解题能力,又能调适心理,使学生进入一个良好的心理和竞技状态。
第三轮为应试训练,主要功能是培养对高考的适应能力和积累应试经验。要求回归课本,再现知识点,巩固所学,加强信息的收集与整理。通过规范训练,发现复习中的薄弱点和易错点,查漏补缺,调控心态,轻松应考。
四、教学具体措施
1、 深入钻研教材,准确解读课程标准,一轮复习从教材和学生实际出发,采取低起点、小步子,适当提升的方式,连接高考,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响。
2、 认真研究近三年的高考试题,准确把握考试说明,在整体上把握高考的重点、难点、热点,特别注意知识点的广度和深度及能力要求,控制好教学的广度和难度,夯实重点,突破难点,找准切入点,科学规划教学内容和教学时间。
3、 加强备课。
1)备基本知识、基本技能、基本思想、基本方法;
2) 备重点、难点、热点,备广度和深度;
3)备学生的实际,备教学的切入点,备教学的针对性;
4)精选例题和训练题:
a) 注重对“四基五能力”的考察把握,贴近课本;
b) 注重学科内容的联系与综合;
c) 注重数学思想方法、通性、通法,淡化特殊技巧;
d) 注重能力立意,以考察学生逻辑思维能力为核
高中数学名师心得体会精选 高中优秀数学老师教学感悟(四篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。