电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

中国数学史的发展心得体会和感想 关于数学史的心得体会(9篇)

来源:互联网作者:editor2024-02-021

从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?下面是小编帮大家整理的优秀心得体会范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

描写中国数学史的发展心得体会和感想一

1、本课从实际生活情景引入,让学生产生疑问,从而引出百分数。

本课开始,设计了一个网上竞答:李斯同学答25题,对22题;张良同学答20题,对18题;刘清同学答50题,对46题,你觉得那位同学可以参加下一轮的比赛呢?学生开始了积极思考,说出了以下几种结果:“刘清,因为他答对的最多。”“张良,他答错的最少”“我比较正确率”。在学生否定了第一第二位同学的回答之后,我再和大家一起讨论第三位同学汇报的结果,自然引出如何比较正确率,转化为分母为100的分数的比较,在将这些分数改写成百分数的形式,学生在自己解决问题的过程中了解了百分数的含义。

2、通过课前收集百分数信息,课上汇报,主动去理解百分数的含义。

百分数的含义只有一句话,如果老师教给学生只要几分钟,但真正理解它还需要下翻功夫。因此,我想教给他们不如让他们自己来理解领悟。学生收集了很多信息,如“羊毛70%”,“橙汁含量〉10%”等等,让他们说出含义之后再问学生,到底什么叫百分数?在理解的基础上学生自己总结,印象深刻,理解透彻。

《扇形统计图》的教学反思(九)

我上了一节“扇形统计图”,课后有如下反思:

成功之举

1、激发学生思维,给学生更多的思考空间

课上我是通过提问发散性问题来激活学生思维。如:“从这幅图中你能想到什么”学生回答五花八门,多是肤浅的问题,但参与面很广。接着第二次提问:“从这幅图中你还能想到什么”学生的回答转向一些具体问题。如:“我们一般用圆表示--------。用扇形表示---------,扇形的大小表示——”等等。

2、促成情感目标的落实

如提问:“作为发展中国家的公民你应该怎样去做。”从而激发学生的民族自尊心。

败笔之处

1、有些题目讲的太快部分学生没有跟上,特别是第七张幻灯片中计算扇形b表示的人数和c表示公顷数时讲的不透彻。

2、没有掌握好时间,整节课前松后紧,以至于有点拖堂。

描写中国数学史的发展心得体会和感想二

一 复习主要考点

(1)一元二次不等式, 分式不等式, 绝对值不等式与集合的综合问题

(2)基本不等式与耐克函数的综合问题, 特别是等号不成立时, 利用耐克函数的单调性求函数的最值

(3) 函数的运算要注意定义域的确定

(4) 函数的奇偶性和单调性的证明, 强调方法和步骤及书写规范

(5) 函数的应用题, 要强调函数关系的建立过程和定义域的确定

(6)数形结合思想和分类讨论思想的数学方法

(8)开放题, 如已知一元二次不等式解集, 求此一元二次不等式

(9)注意课本例题和练习册上的习题

二 复习题围绕以上考点来命题

②社会存在和社会意识的关系,并由此去理解评价历史的实践标准。所谓实践标准,就是要根据实践检验的结果立论。如19世纪中期的西欧可以产生马克思主义,而同一时期的中国则发生了太平天国运动,洋务运动。马克思主义和洋务运动代表了历史发展的方向,而太平天国运动则不代表历史发展的方向。俄国1861年改革的性质不是由统治者的主观意志决定的,而是由历史发展进程的特点决定的,体现了资本主义的性质。

组织好每周一次的备课组活动,统一好每周的教学进度,确定好每周的中心发言人,中心发言人要就下一周的教学内容以说课的形式作中心发言,大家再集思广益,八仙过海,写出自己切实符合学生实际的复习教案。

准备以每日一个小练习的形式来落实这些复习题的训练

三 模拟试题和模拟考试

职场中有些员工认为自己有工作失误时不必及时向上司汇报,只要自己事后弥补了失误就没什么大不了的。话虽这么说,但是你如果能在出现工作失误时不仅仅只是在想办法弥补,而是能够做到第一时间就让上司知道你的失误,或许你处理失误的过程中就会轻松得多,因为你也会在第一时间得到上司的帮助,而不仅仅是批评指责。

针对以上考点出两套模拟试题在第19和20周各进行一次模拟考试,并及时反馈分析,做好补缺补漏工作。

描写中国数学史的发展心得体会和感想三

我参加过两次考研,第一次在x年,考北航计算机研究生:第二次,考西工大,x年研究生。两次考研,第一次312,第二次356.我将自己的感受写出来,希望能帮助大家。

x年的计算机,总分356,数学121,专业96,英语56,政治83.我自己是x年毕业的,工作一年后参加考研。其实这个分数自己还是比较满意的,专业课比自己预想的低了些。

先说一下数学吧,121分,不高也不低,相信如果考计算机,考中国任何一所大学都不会拉分。现在全国联考计算机,可以说得数学者得天下,那么数学的复习就显得很重要了。考研的时候,总会有人问“李永乐或者陈文灯的书,你做第几遍了”,

我可以回答,我一遍都没做过。考研是一个很基础的东西,所以,要抓住最基础的问题,那就是课本,也许很多人户屑于课本,觉得太简单,那就大错特错了。首先,你应仔细的看课本,每一个概念,每一个例题,每一道习题,这是你以后成功的保证。对于概念,定理,要有自己的理解,可以用自己的语言来描述,可以知道他们彼此之间的关系,能做到合起书,将一个个定理在草稿纸上推导出来,知道书中各个章节的顺序,并且知道他们之间的联系。说得夸张一点,你可以默写出书中各个章节的标题,包括小标题。如果你能做到以上的,你的概念和理论就没有一点问题了。再说例题,课本上的例题很简单,

但是很典型,最简单的例子最容易说明最重要的问题,你就不会被繁琐的解题步骤弄的不知道例题到底想说明什么。举个例子,在一阶导数的例题里,仔细看看,你就会发现,例题中包括所有的求导方法。也许,你自己却从未意识到,还在看考研参考书里的分类,永远记住,课本是最好的参考书。最后说习题,书上的习题,相信没有多少考研的人每一道题都认真做过。但是,习题,就如同例题,简单,但是最能要你明白你所需要学习的知识点。

所以,对于课后习题,你用过仔细认真的去做每一道题。会做并能做对每一道题是最基本的要求,你还要明白你所做的每一道题是考察你什么知识点,用的是什么方法,可以尝试在习题旁边写上出题人的意图。能做到以上3点,可以说你就拥有一个很好的基础了。高数,线代,概率,这三门课是一样的。线代,其实最简单,如果你能不看书推到出每一个定理(如果能,你就知道他们之间的联系,那思路一定会很清晰),

那么我想如果你不会做的题,那90%的人肯定不会做。概率,看起来公式太多,很难记住,同样,推导每一个公式,平时练习的时候做到不看书查公式,查定理,忘记了或者记不住了,就推导。

慢慢你就会发现,你都可以记住了,即使考试一紧张忘记了,也能用很短的时间推导出公式了。曾经在考研论坛上看到过,刚开始复习的时候觉得高数简单,线代和概率太难。随着复习的深入,就会发现线代和概率是那么的简单,高数有点难,这就对了。我觉得课本至少看两遍,一直看到,闭着眼,能回想起书中的每一个知识点。

当然,根据自己的基础,如果你还觉得哪些知识点薄弱,那就多做习题,不要把盲点留到最好。在复习课本的时候就可以做真题了,我选的是黄先开的那本历届数学真题解析,将近20年的数学真题分章节讲解,练习题也是真题,不过不是数一的。认真的做每一道题,然后思考出题者的意图,这一点很重要。

描写中国数学史的发展心得体会和感想四

两年多来,我国义务教育数学课程改革呈现了可喜的变化。学生的知识面广了,学得活了,学习兴趣浓了,课堂开放了,教师与学生的亲和力增加了。在看到这些变化的同时,又要冷静下来对目前实施过程中的一些困惑问题进行反思。“摸着石头过河”,究竟摸到哪些石头?摸得怎样?有哪些问题有待进一步研究解决?下面对几个问题谈谈自己的看法。

一、多样化与优化

现代教育的基本理念是“以学生的发展为本”,既要面向全体,又要尊重差异。作为教师,要促进学生的全面发展,就要尊重个性化,不搞填平补充一刀切。要创造促进每个学生得到长足发展的数学教育。

算法多样化是针对过去计算教学中往往只有一种算法的弊端提出来的。例如某一种题目,只要求笔算,另一种题目只要求口算,即使口算也往往只有一种思路(当然,学生如有其他思路也不限制),这样很容易忽略个别差异,遏止了学生的创造性,何况有不少题目本来就可以有多种算法的。可以说,鼓励算法多样化是在计算教学中促进每个学生在各自基础上得到发展的一个有效途径。

应该明确“算法多样化”与“一题多解”是有区别的。“一题多解”是面向个体,尤其是中等以上水平的学生,遇到同一道题可有多种思路多种解法,目的是为了发展学生思维的灵活性。而“多样化”是面向群体的,每人可以用自己最喜欢或最能理解的一种算法,同时在群体多样化时,通过交流、评价可以吸取或改变自己原有的算法。因此,在教学中不应该也不能要求学生对同一题说出几种算法,否则只是增加学生不必要的负担。

曾经看到一些低年级的计算课上,讨论一道计算题,出现了10种、20多种的算法,教师还一个劲儿地给予鼓励,临下课时,只简单地说了一句:“你们可以用自己喜欢的方法来算。”其结果是班上思维迟缓的一些学困生确是眼花缭乱、无所适从,产生了干扰。这种情况是不是我们鼓励的个性化呢?我认为不然。数学是讲“优化”的,算法“优化”的含意是要求寻找最简捷、最容易、速度快的方法。诚然,在多种算法中,有的并不见得有优劣之分,如20以内退位减法,无论是用“破十”“连减”或“用加算减”的方法,都很难说孰优孰劣,儿童完全可随自己的经验进行选择;又如长方形周长的求法,有的愿意用“(长 宽)__2”的方法,有的则用“长__2 宽__2”的方法,学生喜欢用哪个就用哪个。

但是,一般情况下,总有个最基本、最一般或最佳的算法。教学中,教师有责任引导学生去比较、去评价,并使大家掌握那些公认的更好、更一般的算法,以便举一反三、闻一知百,否则就失去了教育的功能。请看一位教师教两位数乘两位数的新课实录。由实例引出24__12=?第一步,先由学生各自探索算法,分组交流(有10种左右),经过归纳不外乎以下三类:连加,连乘24__3__4,24__2__6,……),乘法分配律的应用(24__10 24__2,……)。第二步,由学生评价,一致认为三类算法都合理,但第一类太麻烦,其他两类各有优势。第三步,教师将题目改为24__13,请学生用自己喜欢的算法计算,结果都选择为24__10 24__3,此乃笔算乘法的算理。此时,教师便因势利导引入了乘法竖式,并使学生体会到它的优越性──能将乘法算理以固定而简明的程式显示,操作性强,简捷而不易出错,并具有一般性。我认为这种教学是正确的,又促进了儿童的发展,才是真正凸现了“算法多样化”的实质。算法多样化绝非是越“多”越好,切忌一些无价值的重复。总之,一切要从儿童的实际出发。

二、生活化与数学化

数学源于生活,寓于生活,用于生活。新课程改革重视数学教学生活化,引导学生在活动中学习数学,使孩子们感到数学有趣、有用,取得了明显的效果,也是数学课改的最大亮点。

数学,对儿童来说,是他们自己生活经验中对数学现象的一种“解读”。把数学教学密切联系他们的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,学起来必然亲切、实在、有趣、易懂。教学中,有的通过调查商品标价引入小数乘法,调查父母月工资的收入计算多位数加减,测量足球场的面积并以其为参照物,体验1公顷的实际大小;有的结合新课内容介绍数学知识在实际中的应用;有的复习课也已不只停留在“查缺补漏,知识系统化”上,开始着力于培养学生综合运用知识解决实际问题的能力。记得我曾见到的一节六年级“代数初步知识”复习课,教师把自身赴山东讲课事例作为背景,边说边画:

向学生设问:①你们能用字母表示的式子写出老师淄博一行的全部开支吗?

②想一想,式子中哪些量是不变的?哪些量是可变的?

③算一算,老师这次淄博一行至少要带多少钱较为合适?(小组合作讨论)

整个教学培养了学生利用已学知识综合解决实际问题的能力,并使大家体尝到数学应用的价值。

但是,在课改实践中,我也听到不少教师有这样的疑惑:“数学问题是不是都必须从儿童的生活实际提出?”“教三角形内角和怎样从生活实际引入?”“循环小数又怎样联系学生的生活实际?”……正由于此,有的课已上了15分钟,还停留在大量的情境渲染之中,丝毫没有涉及数学本身的内容,犹如皮厚的“沙田柚”剥不开也吃不着,教学效果可想而知。

应该看到,儿童的数学学习是一种不断提出问题、探索问题和解决问题的思维过程。问题是数学的心脏,数学问题来自两个方面,有来自数学外部的(即现实的生活实际),也有来自数学内部的。无论来自外部或内部,只要能造成学生的认知矛盾,都能引起学生的内在学习动机,就会出现发展,都是有价值的。前面提到的“三角形内角和”,如果采用由旧引新的方法(设问:正方形有几个内角?四个内角和是多少度?长方形呢?三角形三个内角的大小是不固定的,有没有规律呢?)三言两语,就能有效地激起学生的求知欲。因此,看问题必须全面,不能绝对化。教学是科学,一切要从实际出发。

当前,数学教学注重应用,既讲来源,又谈用处,大大地克服了过去“掐头去尾烧中段”脱离实际的倾向,成效是明显的。但必须认清,我们反对的是只“烧中段”,而不是不要“烧中段”,我们反对的是过度的形式化,而不是不要形式化,数学的形式化是数学固有的特点。我们既要注重应用、返璞归真的一面,又要注重抽象概括、形式推理的一面,引导学生抽象出数学问题,提炼出数学模型,利用其已有的知识经验,通过数学思考解决问题。所以,重要的数学概念、规律应加以概括,常见的数量关系(如速度、时间、路程等)在学生理解的基础上仍要揭示,在重视直觉思维的同时,还要注重培养形象思维和初步的逻辑思维,以提高学生的数学素养。

课堂内的数学活动是丰富多彩的。什么是数学活动呢?我认为,具有数学意义的活动才能称得上数学活动。目前,有的数学活动,有情境没有活动,有活动没有数学味,有活动缺乏体验。下面介绍一位教师在教学“11~20以内数的认识”时组织的颇有意义的数学活动。当学生已学会数数(顺着数、倒着数、2个2个地数……)后,组织了一个别开生面的游戏。教师拿出一个黑白相间的足球:“数一数,有几块是白的?有几块是黑的?看谁数得又对又快!”话音刚落,不少学生争先恐后地要求上来。前来的多个学生,每人数的结果都不一样,不是重就是漏,怎么办?正当全班困惑之际,一位小同学自告奋勇地上来,拿起红粉笔在白的上面逐一点数,又拿出白粉笔在黑的上面依次点数,不重也不漏,数得完全正确。这样的游戏活动,不仅激发了学生的兴趣,而且渗透了一一对应的数学思想方法,这才是有价值的有意义的数学活动。

三、探索与发现

学习方式一般说来,可分为接受学习与发现学习两种。

发现学习是由教师提出问题,学生自己独立探索和发现其结论。这种学习方式(亦称发现法)是20世纪50年代末美国著名认知心理学家j.s布鲁纳提倡的,并流传欧美,这种方式在不同的国家有不同的名称,如问题研究法、探索法等,实质均基本相同。布鲁纳认为,在人类全部生活中,人的最大特点是会发现问题。他把学生视为“发现者”,甚至像科学家那样去发现,教师不给任何启发和帮助。创导者认为,这种学习方式可以最大限度地发挥学生的积极性、主动性和创造性,启迪学生的智慧,培养探索能力和独立获取知识的能

中国数学史的发展心得体会和感想 关于数学史的心得体会(9篇)

从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。心得体会对于...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?