电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

学习青年长拳的心得体会 青年长拳的心得体会600字(3篇)

来源:互联网作者:editor2024-02-021

从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。我们想要好好写一篇心得体会,可是却无从下手吗?下面是小编帮大家整理的优秀心得体会范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

2022学习青年长拳的心得体会

②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

体思想求解.

(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

1、 数列的定义及表示方法:

2、 数列的项与项数:

3、 有穷数列与无穷数列:

4、 递增(减)、摆动、循环数列:

5、 数列的通项公式an:

6、 数列的前n项和公式sn:

7、 等差数列、公差d、等差数列的结构:

8、 等比数列、公比q、等比数列的结构:

9、一般数列的通项an与前n项和sn的关系:an=

10、等差数列的通项公式:an=a1 (n-1)d an=ak (n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。

11、等差数列的前n项和公式:sn= sn= sn=

当d0时,sn是关于n的二次式且常数项为0;当d=0时(a10),sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an0)

13、等比数列的前n项和公式:当q=1时,sn=n a1 (是关于n的正比例式);

当q1时,sn= sn=

14、等差数列的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m - s3m、仍为等差数列。

15、等差数列中,若m n=p

学习青年长拳的心得体会 青年长拳的心得体会600字(3篇)

从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。我们想要好好...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?