三角形的四心学习心得体会总结 三角形感悟(八篇)
我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。我们如何才能写得一篇优质的心得体会呢?下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。
最新三角形的四心学习心得体会总结一
1、通过实验、操作、推理归纳出三角形内角和是180°。
2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。
3、通过拼摆,感受数学的转化思想。
探究发现和验证“三角形的内角和180度”。
验证三角形的内角和是180度。
多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。
1、一个平角是多少度?等于几个直角?
2、∠ 1=35°,∠2=78°,求∠3是多少度?
1、说明三角形的三个内角和
说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?
师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。
板书课题:“三角形的内角和”。
揭示课题:今天我们一起来探究三角形的内角和有什么规律。
2、探究三角形的内角和规律
探究1:量一量,算一算
以小组为单位,用量角器计算出三种三角形的内角和各是多少度?
生讨论汇报,并引导学生发现:三角形的内角和接近180°。
师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?
学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?
探究2:摆一摆,拼一拼
引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?
生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做
如图:
(1)
锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°。
(2)
让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°。
(3)
让学生独立用同样的方法,发现:钝角三角形的内角和也是180°。
引导学生归纳:三角形的内角和是180°。
是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)
板书:三角形的内角和是180°
1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?
学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1 ∠2 ∠3=180°,借助图像
∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1 ∠3)
= 180°-140°-25° =180°-(140° 25°)
=40°-25° =180°-165°
=15° =15°
2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?
学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以
(180°-80°)÷2
=100°÷2
=50°
1、求出下面各角的度数。
(1) (2)
2、判断
(1)三角形任意两个内角的和大于第三个角。( )
(2)锐角三角形任意两个内角的和大于直角。( )
(3)有一个角是60°的等腰三角形不一定是等边三角形。( )
3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?
( ) ( )
1、谈谈这节课你有什么收获?
2、课后思考题
三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)
板书设计
最新三角形的四心学习心得体会总结二
《三角形的面积》是在教学了长方形的面积和平行四边形的面积之后进行的新的图形的面积的计算内容。本节课的重点是让学生通过转化的思想能够找出求三角形面积的方法。难点是理解在三角形的面积公式中为什么要除以2。同时,突破重点的过程也是本节课的一个新的难点。尤其是对于那部分学困生来说,通过把三角形的面积转化成平行四边形的面积,从而在抽象出此时三角形的底和高与平行四边形的底和高是相等的这一重要环节上,肯定会出现一部分学生不知其所以然的局面。
在整个教学过程中,我通过以下环节来辅助本节课突破重难点::
1、学生掌握了学习平行四边形面积的方法,所以本节课我设计了提问导入:“三角形的面积跟什么图形有关系,可以让我们想办法求出三角形的面积”。学生有过学习平行四边形面积的经验,因此今天我在抛出问题之后,只是稍作考虑就想到了可以把三角形转化成平行四边形的面积来计算。学生们通过讨论活动,得出方法,很高兴,同时也找到了解决今后类似问题的思考方向。
2、为了突破这个难点,本节课在课前准备的时候我准备了三组完全相同的锐角、直角、钝角三角形。让学生在想到能把三角形的面积转化成求平行四边形的面积之后,看着老师给出示的几组图形,然后把它们拼一拼摆一摆,看看能不能得出我们想要的图形来。学生动手操作之后发现:那两个完全相同的三角形可以拼成一个平行四边形、两个完全相同的'直角三角形可以平成一个长方形,这样,我们只要先计算出平行四边形或长方形的面积,然后除以2 就可以得到三角形的面积了。学生的思路顿时打开,畅所欲言中巩固对三角形面积的理解:三角形的面积=平行四边形的面积÷2。然后进一步吧平行四边形的面积用底乘高代换了,就得到了三角形的面积公式:三角形的面积=底×高÷2、这样,本节课的重点就算是在学生的动手操作中完成了。
3、练习时,设计的梯度是由易到难,主要是先让学生学会熟练的应用三角形的面积公式求出面积来,然后再给出已知面积求高或底的题目,这样的升华是让不同的 学生在不同层次上有个全面的提升,从而实现“共同富裕”!本节课的练习设计是经过仔细挑选的,因此比较有代表性,更能检测出本节课学生理解的程度。
然而,在课堂上,学生喊得是轰轰烈烈,练习完成的也很不错,几乎全班同学在结束的时候都已经熟记了三角形的面积公式,也知道是怎么来的了。但是,却忽略了很重要的环节:课上没有强调平行四边形与三角形的关系,抛出一个问题全班同学都认为是对的——平行四边形的面积是三角形的面积的2倍。因为我们三角形的面积是有平行四边形面积推导出来的,所以学生理所当然的认为这句话是正确的。我在讲解平行四边形与三角形的关系的时候没给学生讲透彻,这两个图形必须是等底等高的情况下,才有2倍的关系,否则是无法比较的。为了解决这个问题我在黑板上画了两个图形:一个大大的三角形和一个小小的平行四边形,让学生观察这两个图形,然后来判断他们的面积大小是不是老师给出的那个结论中的话,学生才恍然大悟,原来这二者的关系必须建立在等底等高的前提下才能成立。这也正是因为我在新授环节中没能给学生讲清楚,因此才在快下课的时候用了近5分钟的时间给学生重新“灌输”!哎,看来教学这个东西,在课前必须是实实际际、方方面面都要考虑到才行啊!
教学总是在教然后知学的困惑,如果在教之前就能够把学中遇到的问题都扫清的话,相信每节课都会是精品课,无可挑剔!
最新三角形的四心学习心得体会总结三
1、教学内容
九年义务教育小学数学教科书(人教版)四年级下册第五单元:三角形的分类(按角的特征)
2、教材简析
“三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生研究三角形的特征,从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下了基础。
四年级的学生通过一、二年级的学习,对三角形都有一定的认识,而且也学习了角的分类和线线之间的关系,因此在教学中,教师能自然的引入。
1、学生通过观察、操作、比较,会给三角形进行分类,辨认出锐角三角形、钝角三角形、直角三角形、等腰三角形、和等边三角形。
2、在三角形分类的的操作讨论活动中,总结、区别这些三角形的特征。
3、能举出三个以上在生活中见过的等腰三角形和等边三角形。
4、能通过自主探究和合作交流,提高观察能力和动手操作能力。
教学重点:让学生在“做”中,学会按角和边的特征给三角形分类。
教学难点:区别、总结各类三角形的特征。
(一)复习铺垫 引入新知
1、师:同学们,你们说说以前学过哪些图形?三角形是什么样的?谁想上黑板画给大家看一看?
2、师:从同学们画的三角形中我们可以看出三角形可能存在这三个角。(课件出示)
①锐角、直角和钝角。
②三角形有三个特点,(课件出示)
有边,角,顶点。
(我这样设计的意图是:让学生复习与新知识有密切联系的旧知识,是为学习新知识做好迁移铺垫,为突破难点打基础。)
3、揭示课题
在三角形这个大家族里,你若仔细观察,会发现它们的角和边各有特点,这节课咱们根据三角形角和边的特点给它们分类,好不好?
(板书:三角形分类)
(我这样设计的意图是:揭示课题的同时让学生明确了新课的学习任务,使学生学有目标,克服了盲目性。)
(二)实践探究 活动验证
1、根据角的特点,对三角形进行分类。(1)学生先是独立思考、独立操作,独立探索分类。(事先给每个学生准备一个学袋:一张表格和一张彩色卡纸)
①学生根据表格对这12个三角形进行观察,再填表。填完表格,再对表格中的数据进行观察,就能容易地进行分类。
②把分类的结果贴在彩色卡纸上。
①②③④⑤⑥⑦⑧⑨⑩1112
锐角个数
直角个数
钝角个数
(2)小组交流
学生在小组内分别展示自己的劳动成果,说说自己的分类依据。
(3)展示学生
三角形的四心学习心得体会总结 三角形感悟(八篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。