电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

《数论基础》心得体会及收获 初等数论课程收获(6篇)

来源:互联网作者:editor2024-02-022

体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。那么心得体会该怎么写?想必这让大家都很苦恼吧。下面我给大家整理了一些心得体会范文,希望能够帮助到大家。

最新《数论基础》心得体会及收获一

然后通过例2的教学让学生进一步理解负数的意义,明白用正负数可以表示一些具有相反意义的量,从而让学生体验负数产生的原因,接着引导学生列举生活中正负数应用的实例。如:飞机上升500米用 500米来表示,下降500米则用-500米来表示;小红向东走了20米用 20米来表示,向西走20米则用-20米来表示。再次让学生体会引进负数的必要性,理解负数的意义,建立正数和负数的数感。这种生活化、经验化的问题情境,让学生体验了数学与生活的密切联系,并能激发学生自觉地用数学的思维方式来观察和解决生活中的实际问题。

通过这节课的教学,我有以下几点感受:

数学来源于生活,负数的出现,是生活中表示两种相反意义的量的需要。因此在课的开始,我为学生提供一些熟悉的生活素材,让学生从身边熟知的生活现象出发,利用原有的生活经验,解决如何记录、区分两种具有相反意义量的现实问题。学生在记录及交流记录方式的过程中,经历数学化、符号化的过程,体会负数产生的必要性,亲身经历知识的产生过程。并引导学生把所学的数学知识应用到生活中去,用正、负数解释身边的数学问题,体会了数学在现实生活中的应用价值,体会了学习数学的重要性。

为突出重点、突破难点,我精心设计了数学问题,如:先提出如何能表示相反意义的两个量,引发学生思考,寻求区分两种量的方法。并在交流记录方式的互动过程中,进一步启动问题:哪种记录方式更加简练呢?在此基础上,我进一步提出生活中还有哪些用正、负数表示的例子?培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感觉数学在实际生活中的广泛应用。我在课堂上不断引发学生进行数学思考,深化学生的数学思维活动,层层推进,突破了难点,突出了教学重点。因此在对0的归属问题的讨论中,学生很自然地借助温度计、海平面、地上地下等具体情境来说明0既不是正数也不是负数,0是正数和负数的分界点。

以知识教学为载体,渗透数学思想方法,增强学生数学观念,是形成良好思维素质的关键。我请学生观察交流中出现的这些数,你有什么发现?这样既发展了学生对整数的认识,又渗透了分类思想是认识一类事物本质特征的一种有效途径和手段。在课的结束部分,我又和学生一起阅读《九章算术》中正数和负数的记载,了解古今中外认识和使用负数的情况,让学生体会到负数发展的历程,特别是中国在负数发展上做出的卓越贡献,再次激发学生对数学的亲切感。

如:可能是给学生提供的生活素材还不够多,学生对负数产生的必要性体会还不够深刻.

最新《数论基础》心得体会及收获二

尊敬的各位评委,各位老师:

大家好!我说课的内容是《分数的基本性质》。这课选自北师大版小学数学五年级上册第三单元的学习内容,这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。

根据本单元的教学要求和本课的特点,我设计本课的教学目标有三点:

1、(认知目标)理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2、(认知目标)理解和掌握分数的基本性质。

3、(能力、情感目标)培养学生观察、分析、推理的能力。

:理解和掌握分数的基本性质。

:让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

《数学课程标准》提出:把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。如何充分发挥、凸显现代信息技术的优越性和有效性而又省时省力呢?

本课依托网络平台,为学生创设一种大问题背景下的探索活动,以游戏这个学生感兴趣的明线下,借助网络实验室,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会数学的科学性。创设“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生大胆猜想——验证猜想——完善猜想等,从而一步步使分数的基本性质趋于完善。

我设计的具体教学过程如下:

“好的开始是成功的一半”,本课运用学生感兴趣的电脑游戏和卡通人物导入新课,有效地开启学生思维的闸门,激起猜测探究的兴趣,通过比较三个分数的大小,凸显矛盾冲突。(我在教学比较这三个分数大小时,学生们各抒己见,坚持着自己的观点不放,使得不同观点的矛盾激化,激发了学生的好奇心和争强好胜的心理,为后面的发现规律埋下伏笔。)

1、提出猜想。

学生进入国外网站,通过操作,直观的观察情境中三个分数的涂色部分,发现这三个分数的大小是相等的。

再引导学生观察这组分数中“什么变了,什么没变”,从变了的分母、分子入手去观察它们是怎么变的,得到初步的猜想,“分数的分子、分母都乘或除以2,分数的大小不变”。

(“学起于思,思起于疑”。这个环节中,当学生猜测三个分数谁大谁小,运用网络实验室用比平时更少的时间、更直观的得出三个分数大小相等,为后面猜想的提出提供了更多观察、交流的时间)

2、完善猜想。

在得到初步猜想后,在游戏的大背景下,再出示一组分数:三分之二和十五分之十。学生猜测大小、进入网络实验室验证,发现这两个分数也是相等的。

这一部分的主要目的则在于完善初步猜想,使学生感受到分子、分母不仅可以乘或除以2,分数大小不变,还可以乘或除以像5这样更大的数,从而得到进一步的猜想:“分数的分子、分母都乘或除以同一个数,分数的大小不变”。

(在这一环节中,网络实验室再次起到了快速、直观知道分数大小的作用,唯一不同的是,这次使用了纸条这个不同的表现形式,通过不同的表现形式来表达分数的意义)

3、验证猜想,得出规律。

学生把符合猜想的三组分数记录在学习卡上,(用图片方式呈现)再到网络实验室里进行验证,看看是否也都具有一定的规律。通过大量的例子显示这不仅仅是学生的猜想,而是具有一定规律的。

最后运用分数与除法的关系和商不变的性质,从旧知迁移解释、理解新知,得到“同一个数”不能为0,从而确定了最后规律,得到本课课题:分数的基本性质。(平时的教学中能验证的分数少之又少,而学生通过猜想可以得到的分子、分母较大的相同大小的分数——如二分之一和百分之五十这样的分数就很难验证,通过我们的网络实验室就能很好地解决这个问题,充分体现了网络实验室的重要性和必要性。这样,在平常教学中最花费时间的环节——验证上节省了不少时间)

学生已经理解了分数的基本性质后,再次进入网络实验室,以玩游戏的形式巩固所学的规律。(教师也从这个过程了解学生的掌握情况。有的学生在玩这个游戏的时候甚至发现了两个分数之间的分子、分母分别不具备倍数关系,如十二分之六和十八分之九,还发现通过找中间数也能运用分数的基本性质解释这个现象。)

接着再通过回到第一组分数,利用分数的基本性质写出与第一组分数相等的分数来提升学生的思维,初步感知与第一组分数相等的分数还有很多很多。让学生感受到分数的基本性质应用非常广泛,还需要他们进一步的学习和探索。

师生共同回顾学习过程,总结并提炼出探索规律的方法:猜想→验证→得出结论,为学生今后的学习提供科学的学习方法。

一节课的结束不仅仅是解决了几个问题,更重要的引发学生新的思考和新的探究行为,但一节课的时间是非常有限的。所以在课的最后,教师在课件上给学生提供了课堂上所用网络实验室的网址和老师的博客,让学生通过网络实验室这个平台及博客这个载体,在网络上回馈所学、发表言论。记得我公布博客地址不久就得到了学生的反馈,甚至听课老师也参与其中,给我提出许多的意见和建议。这样能让学生感受了网络资源丰富的同时,也使这节课不仅仅局限在课堂上,还拓宽到了网络以及今后的生活、学习中,真真正正的利用、发扬网络资源,把一些常规课堂无法实现的交流,都一一实现,体现了信息技术的人性化、学生主体性以及网络的延迟性和广泛性。

最后我以一句话结束我今天的说课“儿童是知识的创造者而不是被动接受者,他们主动地建构属于他们自己的知识和对事物的理解。当孩子们在经历数学、体验数学时,课堂才是充满活力的!”,谢谢大家!

最新《数论基础》心得体会及收获三

大家好,今天,我说课的内容是人教版实验教材五年级下册的《分数的基本性质》。我将从教材、教学目标、教学重点和难点、教学过程与板书设计等方面做一个说明,首先是说教材。

《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。

接下来说说学情分析。学生在三年级上学期已经初步认识了分数,还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。

本单元的

《数论基础》心得体会及收获 初等数论课程收获(6篇)

体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。那么心得...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?