电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

数学科普心得体会 数学科普心得体会200字(7篇)

来源:互联网作者:editor2024-02-032

我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会下面是小编帮大家整理的心得体会范文大全,供大家参考借鉴,希望可以帮助到有需要的朋友。

推荐数学科普心得体会

学生经过上一学期的数学学习后,其基本知识、技能方面基本上已经达到学习的目标,对学习数学有着一定的兴趣,乐于参加学习活动中去。特别是一些动手操作、需要合作完成的学习内容都比较感兴趣。通过这段时间的学习,我发现学生们自觉性较差,上课有小部分同学不注意听讲,口算时比较马虎,课下不能及时完成作业,但是学生的学习积极性很高,小部分学生成绩较差,有待于在今后的教学中,统一规范课堂常规,及时补差,使整个教学能够顺利进行等。因此,在本学期的教学中还有待于进一步提高。

二、教学目标

这一册教材的教学目标是,使学生:

1.认识计数单位“一”和“十”,初步理解个位、十位上的数表示的意义,能够熟练地数100以内的数,会读写100以内的数,掌握100以内的数是由几个十和几个一组成的,掌握100以内数的顺序,会比较100以内数的大小。会用100以内的数表示日常生活中的事物,并会进行简单的估计和交流。

2.能够比较熟练地计算20以内的退位减法,会计算100以内两位数加、减一位数和整数,经历与他人交流各自算法的过程,会用加、减法计算知识解决一些简单的实际问题。

3.经历从生活中发现并提出问题、解决问题的过程,体验数学与日常生活的密切联系,感受数学在日常生活中的作用。

4.会用上、下、前、后、左、右描述物体的相对位置;能用自己的语言描述长方形、正方形边的特征,初步感知所学的图形之间的关系。

5.认识人民币单位元、角、分,知道1元=10角,1角=10分;知道爱护人民币。

6.会读、写几时几分,知道1时=60分,知道珍惜时间。

7.会探索给定图形或数的排列中的简单规律,初步形成发现和欣赏数学美的意识。

8.初步体验数据的收集、整理、描述、分析的过程,会用简单的方法收集、整理数据,初步认识条形统计图和统计表,能根据统计图表中的数据提出并回答简单的问题。

9.体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

10.养成认真作业、书写整洁的良好习惯。

11.通过实践活动体验数学与日常生活的密切联系。

三、教材分析

这册教材包括下面一些内容:位置,20以内的退位减法,图形的拼组,100以内数的认识,认识人民币,100以内的加法和减法(一),认识时间,找规律,统计,数学实践活动。

这册教材的重点教学内容是:100以内数的认识,20以内的退位减法和100以内的加减法口算。在学生掌握了20以内各数的基础上,这册教材把认数的范围扩大到100,使学生初步理解数位的概念,学会100以内数的读法和写法,弄清100以内数的组成和大小,会用这些数来表达和交流,形成初步的数感。100以内的加、减法,分为口算和笔算两部分。这册教材出现的是口算部分,即两位数加、减一位数和整十数口算。这些口算在日常生活中有广泛的应用,又是进一步学习计算的基础,因此,应该让学生结合计算教学,应用所学计算知识解决问题的内容,让学生了解所学知识的实际应用,学习解决现实生活中相关的计算问题,培养学生用数学解决问题的能力。

在学生初步认识了常见几何图形的基础上,本册教材安排了关于位置与拼组图形的教学内容,设计了丰富多样的探索性操作活动,让学生体验空间方位和所学图形之间的关系,发展学生的空间观念。在量的计量方面,本册教材除了安排人民币单位元、角、分的认识外,还安排了学习具体时刻几时几分的读、写方法。

“找规律”和“统计”是两部分新的教学内容。“找规律”引导学生探索一些图形或数字的简单排列规律,初步培养学生探索数学问题的兴趣和发现、欣赏数学美的意识。统计是正式教学统计初步知识的开始,让学生学习收集和整理数据的简单方法,认识最简单的统计图表,经历用统计方法解决问题的过程。

教材根据学生所学习的数学知识和生活经验,安排了两个数学实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。

四、教学措施

1、在教学中不仅要考虑数学自身的特点,而且也要遵循学生学习数学的心理规律,关注每一个学生在情感态度、思维能力等方面的进步和发展。

2、重视基本口算和笔算的训练,培养和逐步提高学生的计算能力。

3、 重视分析应用题的数量关系,培养学生解答应用题的能力。

4、结合教学内容,重视培养学生的数学能力。

5、注意教学的开放性,重视培养学生的创新能力。

6、结合教学内容,对学生进行思想品德教育。

推荐数学科普心得体会

我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。

孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。

一、在解题的方法规律处反思

“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。

例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。

变式1 已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)

变式2 已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)

变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)

变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。

变式5 已知等腰三角形的腰长为x,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)

再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(ab为⊙o的直径,c为⊙o上的一点,ad和过c点的切线互相垂直,垂足为d。求证:ac平分∠dab)

通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。

二,在学生易错处反思

学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!

有这样一个曾刊载于《中小学数学》初中(教师)版20__年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?, a学生的答案是“9”,老师一看:错了!于是马上请b同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。

计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:

(1)请分别指出(—2)2,—22,—2-2,2-2的意义;

(2)请辨析下列各式:

① a2 a2=a4 ②a4÷a2=a4÷2=a2

③-a3 ·(-a)2 =(-a)3 2 =-a5

④(-a)0 ÷a3=0 ⑤(a-2)3·a=a-2 3 1=a2

解后笔者便引导学生进行反思小结.

(1)计算常出现哪些方面的错误? (2)出现这些错误的原因有哪些? (3)怎样克服这些错误呢? 同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。

三、在情感体验处反思

数学科普心得体会 数学科普心得体会200字(7篇)

我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。好的心得...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?