数学分析下期心得体会实用 数学教材分析心得(8篇)
心得体会是指一种读书、实践后所写的感受性文字。我们如何才能写得一篇优质的心得体会呢?下面我给大家整理了一些心得体会范文,希望能够帮助到大家。
有关数学分析下期心得体会实用一
一、数位名称及计数单位理解不够,对个位和十位分不清。
二、由于一年级学生小,对于左右概念分不清。
三、部分学生不理解规律,不知有规律涂色是什么意思。
四、学生对立体图形和平面图形混淆。
五、学生对文字题还不能理解题意。
一、对于重点、难点多强调,多练习。
二、加强直观教学,帮忙学生理解知识。
三、注重学生学习方法,对于某类型题让学生明白方法,不一样题有不一样方法。
四、培养学生认真、细心的好习惯。
五、多方面训练学生本事,仅掌握书本资料是有限地,对知识拓展和外延很重要。
六、培养学生要理解题意,多思考、多动脑,切忌一拿题就开始做的不良习惯,这样做是容易出错的。
七、灵活运用知识解决实际问题的本事有待提高。
有关数学分析下期心得体会实用二
一 做题方式要尽快转变转
很多文科生做数学题很喜欢:做题(有些人甚至是看题)——不会——看懂答案(或者看不懂)——结束,你是不是这样呢?合适的方法是:做题——不会——把目前能计算或推导的结论写出来,想想还差什么---看一眼答案,有些是一看就恍然大悟——那么就自己再重新算一遍,然后好好总结下为什么刚才没算出来,是方法没遇过还是要经过变形自己没看出来,有时候一道题做不出来答案一看就是种超纲题或者偏题难题,数学三一般考的都是最常见,最基础的方法,所以那些冷门方法一律放弃。
二 建立独立思考的解题方式
不要老是看答案,这样才能摆脱文科思维。如果只是一味地机械做题,背答案,即使你做了李永乐的全套也还是没用。
复习全书和指南我都用过,但我推荐全书,就数三而言,全书的题更好更全面,其实两本书很多题目都是重复的。不要说复习全书看了3,4遍,这样太笼统,就像我一站时全书做了7.8遍不也只有110左右嘛,我个人觉得2遍为宜,做得太多后来只会记住题目而不是思维方法。我推荐全书2遍后直接上真题,基础差的甚至660也不用做,因为660的题有些比全书还打,直接做数三真题,然后自己薄弱的地方找全书查漏补缺,而不是反复抱着全书死磕,因为你没个重点,以为全书每道题都要掌握。通过做真题,你知道哪些是数三常考内容,哪些不是,你慢慢会发现全书上哪些是有价值的题目,真题做完数三做做数一数二的相关题,然后上模拟卷,模拟卷至少上30套吧,推荐合工大10-13的,李永乐400题,陈文灯的模拟。
三 严格掐时间做模拟题
首先,很多经验帖不强调模拟题,甚至反对模拟,这和数学基础有关,正如前文所述。逻辑思维好的同学完全可以做做教材,全书,真题然后考个140 ,因为他们数学基础好,他们懂得如何做题。而基础差的同学,像我,可能做个n遍全书仍不得其法。而模拟题或者说真题具有一下全书或者660之类的题集所不具备的几大优势:
1.通过严格掐时间做套题,可以培养你做题的时间优势,对难题有所放弃。今年数三小题难,大题简单,很多人慌了手脚,这就是平时缺乏演练的结果,本人后期保持一天一套题的速度模拟,懂得如何跳过难题,保证计算率,不慌张,可以说考试当天对我来说只是一场模拟,所以我很淡定,要知道基础越差的同学,越是对数学害怕的文科生越是容易在考场紧张!
2.套题一般都是集中出线常考的知识点,有些套题几乎是真题的翻版,改个数字,而数三真题的最大特点就是来自真题,就像13的数三来自往年数三和数一数二的太多了。所以做模拟就是加强对常考知识点的考核,而不像许多全书不分重点。
3.反复看以前做的题容易记住题目本身。许多同学做了7,8遍全书,全书的题都快背出来了,但考场变个型就不知道了,而模拟题很多都是对真题的适当变形,或者自创题,这里强烈推荐合工大的模拟,很接近真题,难度又稍高于真题,我平时合工大模拟130 ,结果也是和最终成绩吻合的。
以上建议希望能给数学基础差,对其有恐惧心态的考生们一些启迪与精神上的鼓励。绝不要忽略数学基础的重要性,通过做模拟题的训练,提高做套题的思维强度。最后期待大家都可以一战成功,金榜题名!
有关数学分析下期心得体会实用三
(一)、衔接内容
1、乘法公式:①两个数的立方和与立方差公式;②两个数的和与差的完全立方公式。
2、公式法,分组分解法与十字相乘法,三种因式分解法。
3、一元二次方程的根与系数的关系。
4、一元二次不等式的解法。
5、绝对值不等式|a-b|c与|a-b|0,ab0)。
教学建议:
1、课时安排:约8课时。
2、上述五个内容的要求,分别为对四个乘法公式不仅能认清它们的结构而且能够理解它们的意义;三种因式分解法要重点突出公式法与十字相乘法能够灵活应用;对韦达定理、一元二次不等式的解法及两类绝对值不等式的解法要求理解它们的意义,掌握它们的用法。
3、对于一元二次不等式及两类绝对值不等式的解法因为是提前教学内容,所以只需介绍其解法,而不要涉及程序框图。
4、对于一元二次不等式的解法,此时不要过多地与其它两个二次纠缠,更不要涉及参数问题!关于三个二次之间的联系以及含参问题到模块必修5中的第三章不等式中重点教学。
(二)必修1 第一章 集合与函数概念
教学建议:
1、课时安排:约15课时。
2、对于集合部分:①要把握好难度,只要求理解集合的描述性定义,不要求对集合的严格的数学概念和特征进行讨论,不要求严格讨论是不是集合等理论较深的问题;②对较复杂的集合不要求从理论上严格证明两个集合相等③只要求了解教材中给出的集合运算的最基本性质,不要求补充集合运算的其它基本性质及其证明。
3、对于函数部分:①函数值域的讨论不宜过难,或在今后的教学中结合后续内容再逐步加难;
②本章函数的教学应基于具体的函数,有关抽象函数(指不给出具体的对应法则,只给出抽象的符号f(x)的函数)内容不宜引入;
③复合函数也不宜过多引申;
④对分段函数只是通过一些简单实例了解基本概念和简单应用即可;
⑤对有关求函数表达式的问题不作要求;
⑥研究函数基本性质应局限于具体的简单的函数,不要求讨论有关抽象函数的奇偶性;
⑦对,奇偶函数图像的对称性不要求作严格证明。
(三)必修1 第二章 基本初等函数(2)
教学建议:
1、课时安排:约18课时
2、有关根式的运算和化简不宜过繁过难。
3、关于指数函数的复合函数,分段函数问题的讨论不宜过繁过难。
4、对一般的形式化的反函数定义和求法都不作要求;
5、简单介绍指数与对数的概念及相互关系的发现发展历史,提高对数学高度的抽象性和广泛应用价值的理解;
6、可以简单讨论函数y=x 的一点性质,不要求系统讨论,主要是从中体验讨论研究函数的一般方法;
7、不要求在一般的幂函数上作引申推广。
8、注意从感性到理性的认识过程,让学生感受基本初等函数的演变过程,把握难度和标高,不要刻意追求讨论抽象的理论问题以及盲目引申过多过难的内容。
(四)必修1 第三章 函数的应用
教学建议
1、课时安排:约10课时。
2、对连续函数在闭区间上存在零点的判断方法,只要求直观理解和简单应用,不需要给出证明,但要告诉学生仅是直观理解而不是严格证明。
3、在实际应用和学习数学建模的过程中,要把培养提高学生应用数学的自觉意识作为重点。
4、体会现代信息技术对学习、研究数学的重要性和优越性。
(五)必修4 第一章 三角函数
教学建议
1、课时安排:约20课时。
2、关于弧度制的概念只要求学生理解弧度也是一种度量角的单位,随着后续内容的学习他们会逐步加深理解,在此不必深究,对弧长公式,也不必在应用方面加深;
3、用同角关系证明三角恒等式和进行求值计算,教学中不必作太多地拓展、补充。
4、突出三角函数的工具性,重点是引导学生建立三角函数模型;
5、注意新旧教材的差异及课标内容的变化,突出函数味道
6、注意重点解决好几个具体问题:
一是充分利用学生的生活经验创设问题性;
二是利用相关知识的联系,引导学生类比学习,加强教学的思想性;
三是充分利用几何直观,加强数形结合思想方法的运用;
四是重视学科之间的联系与综合;
五是把握教材要求,不搞复杂的技巧性强的三角变换训练。
(六)必修4 第二章 平面向量
教学建议
1、课时安排:约15课时。
2、向量的线性表示应控制在基本要求的范围内,不宜作太多的扩充。
3、对于运算只要求会用即可,对基础较好的学生可以介绍证明方法。
4、平面向量的基本定理不作严格的证明。
5、平面向量的应用主要在平面几何和简单的物理学这两个方面不在其它方面拓展。
6、准确把握教学尺度。
了解:向量的实际背景、光线向量的概念,向量的线性运算性质,平面向量的基本定理及意义;
理解:向量的概念及几何表示,向量的加法、线法、数乘运算的几何意义,光线向量的含义,共线条件的坐标表示,平面向量的数量积和含义及其物理意义。
掌握:向量的加法、减法、数乘运算、平面向量的正交分解及坐标表示,数量积的坐标表达式,向量垂直、平行的主要条件,平面向量的坐标运算,夹角公式。
7、注意突出向量的实际背景,将抽象问题具体化。
8、 注意突出向量的工具性,增强学生自觉应用向量意识向量的重要功能主要有两个方面:一是向量的语言功能,二是向量的应用功能:向量不但是刻画物体位置、物理 量、几何图形性质的重要工具,同时也是刻画代数中量与量关系的主要工具,因此向量具有几何,代数双重语言功能。是一种重要的数学语言,在用向量解决实际问 题时,必须实现向量语言和其它数学语言的相互转化,消除学生对向量语言的陌生感和神秘感。
向量的应用功能:在高中主要指用向量解决与长度,角度有关的几何问题,处理几何中的平行或垂直关系,在立几中尤为广泛。要引导学生逐步掌握向量法的思路、方法和步骤,并加强运算能力的培养,体会向量法的优越性。
9、突出向量数形的双重性,有机渗透数形
数学分析下期心得体会实用 数学教材分析心得(8篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。