一元二次方程心得体会总结 一元一次方程小结与思考(八篇)
我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。大家想知道怎么样才能写得一篇好的心得体会吗?接下来我就给大家介绍一下如何才能写好一篇心得体会吧,我们一起来看一看吧。
关于一元二次方程心得体会总结一
我今天说课的课题是“销售中的盈亏”,是人教版七年级数学第三章第四节《实际问题与一元一次方程》探究一的内容,这节课的重点就是利用一元一次方程解决商品销售中的实际问题。下面我分别从教材、教法、学法、教学过程四部分来说说我的备课设想。
一、教材分析
前面已经学过解一元一次方程和由实际问题列一元一次方程。本节课是在此基础上进一步学习如何用一元一次方程解决实际问题。由于涉及的知识较多,所以学生学习有一定的难度。通过本节课的学习,熟练掌握列一元一次方程解决实际问题的思维方法,为我们以后学习用二元一次方程组、分式方程以及一元二次方程解决实际问题打下良好的基础。针对本节课的重要性,结合初中数学现行课程标准和素质教育的要求,以及初一学生的认知规律和实际水平,确定教学目标。
(一)教学目标
知识与技能
1、理解商品销售中的进价、售价、利润、利润率的含义以及这些基本量之间关系。
2、能根据商品销售中的数量关系找出等量关系列出方程,掌握商品盈亏的求法。
3、能利用一元一次方程解决商品销售中的盈亏问题。
过程与方法
通过探究和讨论活动,培养学生建立方程模型将实际问题转化为数学问题的化归能力,培养学生分析问题、解决问题的能力。
情感态度与价值观
让学生在实际生活中感受到数学的重要价值,感受到数学就在我们身边,激发学生学习数学的兴趣。
(二)重点、难点
对于初一学生来说,阅读理解能力和有关商品销售知识有限,考虑问题的全面性、深刻性不够,而盈亏问题中的相等关系是解决销售问题列方程的重要依据,因此确定本节的重、难点如下:
重点:能利用一元一次方程解决商品销售中的实际问题。
难点:弄清商品销售中的“进价”、 “售价”、“利润” 、“利润率”的含义以及这些基本量之间的关系。
突破本节课重、难点的方法 :弄清问题背景,分析清楚相关数量关系,找出可以作为列方程依据的主要相等关系。
(三)、教具准备 多媒体课件
二、教学策略
根据这节课的特点,在教学策略上分为两步:
(一)问题——在生活中产生
根据初一学生活泼、好奇的性格特点,课程一开始就创设了情境,使数学问题生活化,与学生的现实生活联系起来,这样可使学生在数学活动的情境中借助已有的生活经验,去感受,去经历,从而促使学生发现问题、提出问题和解决问题。上一节课我提前给学生留了一个特殊的作业,让他们作一个市场调查,了解进价、售价、利润、利润率之间的关系,初步理解在销售中的盈亏问题,为本节课的学习奠定基础。
(二)问题——在探究中解决
考虑到本节课的特点,我准备充分发挥每个学生的主动性,让学生先认真分析各自的调查情况,再结合多媒体图片和老师出的问题,引导学生自主学习、合作学习和探究学习,以小组的形式讨论、归纳、总结出“进价”“售价”“利润”“利润率”之间的关系,进而利用关系探究新知,解决实际问题。
三、学情分析
1、学生社会知识有限,往往弄不清销售问题中的有关概念,理解不清概念之间的关系。
2、学生在列方程解应用题时,可能存在两个方面的困难:
(1)抓不准相等关系;
(2)习惯于用小学算术解法,不适应用方程解决应用题。
3、学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是。作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
4、学生在学习过程中可能不完全理解概念之间的关系,而习惯于套题型,找解题模式。
四、教学过程
根据初一学生的认知规律和新课标教学理念,在课堂教学中分为七步:
(一)创设情境,导入新课
出示多媒体图片,创设问题情境。
(二)提出问题,归纳公式
学生以小组合作,讨论得出下面概念的含义。
进价:购进商品时的价格(有时也叫成本价)
售价:在销售商品时的价格(有时叫卖出价)
打折:卖货时,按照标价乘以十分之几或百分之几十。
利润:在销售过程中的纯收入。即:利润 = 售价 - 进价
利润率:在销售过程中,利润占进价的百分比 。即:利润率 = 利润÷进价×100%
(设计意图:为了解同学们的调查情况,设置几个概念性的小问题,由学生思考回答,教师再进行总结,既可以让学生知道销售中的一些日常用语,增长知识,又可以为新课的展开作好理论上的准备。)
请学生完成下面两道题:
①一双双星运动鞋打八折后是100元,则原价是多少元?
②进价为80元的一件上衣卖了120元,这件上衣的利润是多少?利润率是多少?
(设计意图:在已有理论经验的基础上,以小组的形式分析、讨论、交流完成,充分发挥学生的主体作用,学生会有获得新知的喜悦感。问题①讨论原价、售价、打折之间的关系;问题②探求进价、售价、利润、利润率之间的关系;通过解决这两个问题,进一步突出、强化本节的重点—利润率的计算公式以及它的变形公式。)
总结出公式:
利润率= ×100% = ×100% 售价=进价×(1 利润率)
(三)探究新知(学习新课)
例:某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%。卖这两件衣服总的是盈利还是亏损,还是不盈不亏?
在学习这道例题时我设计了4个教学环节。
第一个环节:提出问题一
(1)你能从大体上估算卖这两件衣服的盈亏情况吗?
(2)如何说明你的估算是正确的呢?
(3)如何判断盈亏?
(设计意图:让学生体会先估算,后准确计算可减少判断错误,同时引出要利用方程模型来解决问题。)
第二个环节:提出问题二
(1)这一问题情境中哪些是已知量?
(2)哪些是未知量?
(3)如何设未知数?
(4)相等关系是什么?
(5)如何列方程?
(设计意图:为了引导学生突破难点,我采用提问的方式帮助他们逐步解决问题。)
第三个环节:提出问题三
盈利25%、亏损25%的意义?
(设计意图:更进一步让学生准确理解盈利和亏损的含义。)
第四个环节:展示实际问题转化为数学问题的方法步骤
设盈利25%的那件衣服的进价是x元,它的商品利润就是0.25x元,根据售价=进价×(1 利润率)这一相等关系列出方程x(1 0.25) = 60,解得x=48 。设另一件衣服的进价为y元,它的商品利润是 - 0.25y元,列出方程 y (1- 0.25) = 60 ,解得 y =80 。(亏损就是负盈利,即利润为-0.25y元)
两件衣服的进价是x y = 48 80 = 128 元,而两件衣服的售价是60 60 = 120元,进价 大 于售价,可知卖这两件衣服总的盈亏情况是亏损8元。(将结论与先前的估算进行比较)
(设计意图:通过学习前面三个问题,学生掌握了一些销售知识,在此基础上,我针对例题又设计了这道填空题,使学生初步感受“数学建模”的方法,更好地培养学生有条理地进行思考和表达,从而突破本节课重点。)
(四)新知应用
1、巩固练习
新华书店出售a、b两种不同型号的学习机,每台售价为960元。a型一台盈利20%,b型一台亏损20%。该书店出售a、b型学习机各一台是盈利还是亏损,或是不盈不亏?
2、拓展延伸
商场将某款服装按标价打9折出售,仍可盈利10%,已知该款服装的标价是330元,那么该款服装的进价是多少元?
(设计意图: 为了及时检测学生掌握的情况,培养学生类比解决问题的能力,巩固所学方法,渗透数学建模思想,设计了两道练习题。)
(五)总结升华
让学生谈谈收获:
1、本节学了哪些知识?
2、商品销售中的盈亏是如何计算的?
3、用一元一次方程解决实际问题的关键是找出什么?
(设计意图:通过师生对话式交流,让学生真正意识到数学来源于生活,服务于生活,我们要努力学好数学,增强学生的求知欲。)
(六)布置作业
作业:课本习题3.4第3题、第4题
(七)板书设计
销售中的盈亏
1、基本概念: 2、公式
进价: 利润率= ×100% = ×100%
售价: 售价=进价×(1 利润率)
利润:
利润率:
(设计意图: 简洁美观的板书设计给学生以美感,同时可以使学生感到脉络清晰,对本节的重点有个整体认识。)
我的说课完毕,谢谢各位评委老师!
关于一元二次方程心得体会总结二
1、 一元一次方程的解(重点)
2、 一元一次方程的应用(难点)
3、 求解一元一次方程及其在实际问题中的应用(考点)
(1)含有未知数的等式是方程。
(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。
(6)求方程的解的过程,叫做解方程。
(1)用等号“=”表示相等关系的式子叫做等式。
(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;
如果a=b且c≠0,那么
(4)运用等式的性质时要注意三点:
①等式两边都要参加运算,并且是作同一种运算;
②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;
③等式两边不能都除以0,即0不能作除数或分母。
1、解一元一次方程——合并同类项与移项
(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 x=a(a 常数)的形式。
(2)把等式一边的某项变号后移到另一边,叫做移项。
(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a(a是常数) 的形式。
2、解一元一次方程——去括号与去分母
(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。
(2)顺流速度=静水速度 水流速度;逆流速度=静水速度-水流速度。
(3)工作总量=工作效率×工作时间。
(4)工作量=人均效率×人数×时间。
(1)售价指商品卖出去时的的实际售价。
(2)进价指的。是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。
(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。
(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。
(5)盈亏问题:利润=售价-成本; 售价=进价 利润;售价=进价 进价×利润率;
(6)产油量=油菜籽亩产量×含油率×种植面积。
(7)应用:行程问题:路程=时间×速度;
工程问题:工作总量=工作效率×时间;
储蓄利润问题:利息=本金×利率×时间;
本息和=本金 利息。
关于一元二次方程心得体会总结三
教学内容
一元二次方程概念及一元二次方程一般式及有关概念。 教学目标
2
了解一元二次方程的概念;一般式ax bx c=0(a≠0)及其派生的概念;?应用一元二次方程概念解决一些简单题目。
1、通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义。 2.一元二次方程的一般形式及其有关概念。 3.解决一些概念性的题目。
4、通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。 重难点关键
1、?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。 2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念。 教学过程
一、复习引入
学生活动:列方程。 问题(1)古算趣题:“执竿进屋”
笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。 有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。 借问竿长多少数,谁人算出我佩服。
如果假设门的高为x?尺,?那么,?这个门的宽为_______?尺,长为_______?尺, ?根据题意,?得________. 整理、化简,得:__________. 二、探索新知
学生活动:请口答下面问题。
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们次数是几次? (3)有等号吗?还是与多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程。 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程。
2
一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax bx c=0(a≠0)。
一元二次方程心得体会总结 一元一次方程小结与思考(八篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。