二次回路专周心得体会和感想 二次回路实训心得体会(二篇)
学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。那么心得体会怎么写才恰当呢?以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。
关于二次回路专周心得体会和感想一
掌握二次函数y=ax2 bx c的图象与x轴的交点个数与一元二次方程ax2 bx c=0的解的情况之间的关系。
二次函数y=ax2 bx c的图象与一元二次方程ax2 bx c=0的根之间关系的探索。
一次函数y=x 2的图象与x轴的交点坐标
问题1.任意一次函数的图象与x轴有几个交点?
问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?
活动一观察
在直角坐标系中任意取三点a、b、c,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2 bx c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索
如图1,观察二次函数y=x2-x-6的图象,回答问题:
(1)图象与x轴的交点的坐标为a(,),b(,)
(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?
活动三猜想和归纳
(1)你能说出函数y=ax2 bx c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2 bx c=0的根的个数有何关系。
(2)一元二次方程ax2 bx c=0的根的个数由什么来判断?
这样我们可以把二次函数y=ax2 bx c的图象与x轴交点、一元二次方程ax2 bx c=0的实数根和根的判别式三者联系起来。
例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x 25
(2)y=3x2-4x 2
(3)y=-2x2 3x-1
例2.已知二次函数y=mx2 x-1
(1)当m为何值时,图象与x轴有两个交点
(2)当m为何值时,图象与x轴有一个交点?
(3)当m为何值时,图象与x轴无交点?
1、如图2,二次函数y=ax2 bx c的图象与x轴交于a、b。
(1)请写出方程ax2 bx c=0的根
(2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。
2、列举一个二次函数,使其图象开口向上,且与x轴交于(-2,0)和(1,0)
这节课我们有哪些收获?
求证:二次函数y=x2 ax a-2的图象与x轴一定有两个不同的交点。
关于二次回路专周心得体会和感想二
____________租户(以下
二次回路专周心得体会和感想 二次回路实训心得体会(二篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。