数学心得体会文章和感想 数学思想感悟及心得体会(三篇)
我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会下面小编给大家带来关于学习心得体会范文,希望会对大家的工作与学习有所帮助。
主题数学心得体会文章和感想一
这里的教材是泛指,只要选定一本以题型为框架的参考书即可,市面上类似的书籍很多,如复习全书等,精华的内容都是一致的,不必贪多,只要锁定一本适合自己思路的参考书即可。
复习时注意结合前期阶段的复习基础,看到一个题型思考自己对本题型有没有思路,自己在基础阶段是否遇见过类似题目,如何处理?
经过思路上的整理之后,结合教材,对自己不熟悉的思路重点掌握,并做归纳总结。对每一个题型都做类似的工作,这样,熟悉了解题思路之后再辅以题目的练习,就可以消化吸收,化为自己所用。
其次,突出重难点是这一阶段需要明晰的复习任务。以下,按照考研数学考试科目中要求的三科:高等数学、线性代数、概率论与数理统计分别说明各自的重难点分布。
1、高等数学
(1)复习要点:极限的求法;变限积分的应用;导数应用;重积分的计算。
(2)复习方法:高等数学要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。注意综合题的考察。一般说来,综合题的考查内容可以是同一学科的不同章节,也可以是不同学科的。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路。
2、线性代数
(1)复习要点:行列式、矩阵公式;线性方程组的求解;相似对角化问题.
(2)复习方法:线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
线性代数中运算法则多,应整理清楚不要混淆,重要的有:行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方
数学心得体会文章和感想 数学思想感悟及心得体会(三篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。