分数应用题教学心得体会 分数应用题反思(六篇)
我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。我们如何才能写得一篇优质的心得体会呢?下面我给大家整理了一些心得体会范文,希望能够帮助到大家。
描写分数应用题教学心得体会一
1.重视知识的衔接,找准知识的生长点。在新知教学之前,我通过出示两道除法商不变规律的问题,让学生发现在整数除法中,被除数和除数同时扩大或缩小相同的倍数,商不变,由此引入分数的基本性质的教学。这样设计学生在探究分数的基本性质时,就会利用已有知识进行迁移,从而发现分数的基本性质,即分数的分子和分母同时乘或除以一个相同的数(0除外),分数的大小不变。这样通过类比,由于分数与除法的关系,使得分数的基本性质、商不变规律在语言叙述上具有很多的相似性,这样也就能更好的理解分数的基本性质。
2.加强直观操作,经历新知的探究过程。在例1的教学中,通过折纸、涂色等操作活动,帮助学生获得具体、真切的感知,学生在动手操作的过程中就会发现1/2、2/4、4/8的涂色部分的大小相同,也就是这几个分数具有相等的关系,由此让学生进行更进一步的观察,在这个相等的分数中,分子和分母的变化规律,也就是从左往右看分子和分母同时乘2,分数的大小不变;从右往左看,分子和分母同时除以2,分数的大小不变。进而让学生举例进行加以验证,最后概括出分数的基本性质。在整个过程中,既渗透了不完全归纳的思想,也培养了学生的合情推理能力。
学生在练习中在数轴上表示相同的分数时,个别学生会出现没有应用分数的基本性质来进行思考并解决问题,导致出现错误。
要注重引导学生应用所学新知识解决新问题的能力,体会数学学习的思想方法。
关于分数的基本性质教学反思
《分数的基本性质》这节课我引导用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。进一步培养学生用数学的思想方法思考、解决实际生活问题的能力。这节课是在学生已掌握了商不变的性质之后,并在已有知识、数学活动经验的基础上进行的,我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。
2、创设了实用的生活情境,引导学生发现、提出问题,充分发挥学生主体作用,引导学生自主探究。放手让学生操作、观察、比较,验证自己的猜想。通过动手操作三张长方形得纸条,把它们平均折成2份、4份、8份,取其中得1份、2份、4份,图上颜色,并用分数表示,来验证自己的猜想是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。
3、运用知识,解决实际问题。为了把知识转化为能力,练习题的设计注意了针对性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
4、0除外的环节设计是本节课的亮点,在学生根据三个分数归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外。有效突破了难点。
本节课出现的不足是:创设了故事情境,出现了三个分数,但是没有利用好。出现了顾此失彼的现象;猜想的验证过程过于单一,只采用了折长方形纸条的方法来验证,完全可以放手让学生通过各种方法来验证,如画线段图、折圆,折正方形、分苹果图等方法来进行,这样尊重了学生的意愿,也扩大了探究的范围,拓展了学生学习的空间。在形成性质过程中,对分数基本性质与分数除法的关系,商不变的性质等进行了整合,只有部分学生了解,没有深入到全班。
在今后的教学中,需在给学生提供启迪创新思维的活动准备和空间,精心备课,立足学生实际,进一步提高教学实效。
描写分数应用题教学心得体会二
1、使学生了解分数的产生,单位“1”的含义,理解分数的意义。
2、培养学生的观察能力和抽象概括能力。
1、把一块蛋糕平均分成3份,其中的1份用分数()表示
2、把一个圆平均分成4份,其中的一份用分数()表示。
3、把一条线段平均分成8份,其中的1份用分数()表示。
4、用分数表示下面各图中的阴影部分。(p.67第1题)
5、用下面分数表示图中的阴影部分,对不对?为什么?
1、一个食物、一个图形、一条线段都可以看作单位“1”。
2、举几个“1”。
3、其实一把铅笔、一群小羊、一盘苹果、一项工程等组成的整体,都可以看作单位“1”。
4、再举几个单位“1”。
5、把4支铅笔看做一个整体,平均分成4份,每份(1支)是这个整体的1/4,3份是整个整体的1/3。那么两份呢,4份呢。
6、把6只小羊看作一个整体,平均分成3份,每份(2)只是这个整体的1/3。2份是这个整体的2/3。
7、把12只苹果看作一个整体,平均分成4份,每份(3只)是这个整体的1/4,2份是这个整个的1/4。
8、一个食物,一个图形,组成一个整体一把铅笔,一群小羊都可以看作单位“1”。
9、判断题:单位“1”只能是一个物体、吗?
10、教学分数的概念:把单位”1“平均分成若干份,表示这样的一份或者几份的。数,叫做分数。
理解若干份的意思:1份、2份、3份、4份………。.
11、1/2、1/3、1/4、2/5、3/6、5/8
以上这些分数表示把单位“1”平均分成()份,表示这样的()份。
11、教学分母、分子
在分数里,表示把单位“1”平均分成多少份的数叫做分母。
表示这样多少份的数,叫做分子。其中的一份,叫做分数单位。
想:直线上从0到1表示单位“1”,把他平均分成5分,这样的一份用1/5表示,这样的3份,可以用3/5表示。
试一试:指出下面直线上a、b、c各点分别表示几分之几?
1、把15个圆平均分成5份,其中的2份用分数()来表示。
2、把12面小红旗平均分成6分,其中的5分用分数()来表示。
3、把12根小棒平均分成3份,每份是():如果平均分成2分,每份是()。
4、说出下面每一个数的分数单,位,并指出每个分数含有多少个分数单位。
1/75/83/104/159/2031/100
5、4/5是()个1/5。
反思:对于单位“1”的教学不够到位,应通过多种例子举例说明。让学生知道单位“1”不仅指一个物体,也可以指一个整体。这是教学的难点。应予以突破。对于分母
分数应用题教学心得体会 分数应用题反思(六篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。