电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

学习激光焊接心得体会范本 焊接培训心得体会总结简短(五篇)

来源:互联网作者:editor2024-02-013

体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?下面小编给大家带来关于学习心得体会范文,希望会对大家的工作与学习有所帮助。

主题学习激光焊接心得体会范本一

海里有鱼

一个普通战士的名字,

成为几代中国人的记忆。

22年短暂生命里,

一向做着为人民服务的事。

梦想和信念的字典里,

写满热爱党、热爱社会主义。

工作中的你,

干一行爱一行精一行的坚持。

生活上的你,

艰苦奋斗,忘记休息。

现实社会,更需要你,

为人民服务,从小事做起。

工作中的自强不息,

生活上的节俭朴实,

创新路上锐意进取,

一辈子的好人好事,

成就了伟大的名字,

我们都要向你学习。

主题学习激光焊接心得体会范本二

本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.

②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

体思想求解.

(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

>

1、 数列的定义及表示方法:

2、 数列的项与项数:

3、 有穷数列与无穷数列:

4、 递增(减)、摆动、循环数列:

5、 数列的通项公式an:

6、 数列的前n项和公式sn:

7、 等差数列、公差d、等差数列的结构:

8、 等比数列、公比q、等比数列的结构:

>

9、一般数列的通项an与前n项和sn的关系:an=

10、等差数列的通项公式:an=a1 (n-1)d an=ak (n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。

11、等差数列的前n项和公式:sn= sn= sn=

当d0时,sn是关于n的二次式且常数项为0;当d=0时(a10),sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an0)

13、等比数列的前n项和公式:当q=1时,sn=n a1 (是关于n的正比例式);

当q1时,sn= sn=

>

14、等差数列的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m - s3m、仍为等差数列。

15、等差数列中,若m n=p q,则

16、等比数列中,若m n=p q,则

17、等比数列的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m - s3m、仍为等比数列。

18、两个等差数列与的和差的数列、仍为等差数列。

19、两个等比数列与的积、商、倒数组成的数列

、 、 仍为等比数列。

20、等差数列的任意等距离的项构成的数列仍为等差数列。

21、等比数列的任意等距离的项构成的数列仍为等比数列。

22、三个数成等差的设法:a-d,a,a d;四个数成等差的设法:a-3d,a-d,,a d,a

学习激光焊接心得体会范本 焊接培训心得体会总结简短(五篇)

体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。心得体会...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?