电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

数学教学策略设计简短 小学数学教学策略设计(8篇)

来源:互联网作者:editor2024-02-032

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

推荐数学教学策略设计简短一

在我校整体构建的和谐教学模式下,学生可以在九年义务教育数学课程的基础上,进一步提高作为未来公民的数学素养,以适应个人发展和社会进步的需要。具体目标如下。

1.获取必要的数学基础知识和技能,了解基本数学概念和结论的本质,了解概念和结论的背景和应用,了解其中包含的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习和探究活动,体验数学发现和创造的过程。

2.提高空间想象、抽象概括、推理论证、计算求解、数据处理等基本能力。

3.提高数学上提出问题、分析问题和解决问题(包括简单的实际问题)的能力,数学上表达和交流的能力,培养独立获取数学知识的能力。

4.培养数学应用和创新意识,努力思考和判断现实世界中包含的一些数学模型。

5.提高学习数学的兴趣,树立学好数学的信心,形成坚忍不拔的精神和科学的态度。

6.有一定的数学视野,逐渐了解数学的科学价值、应用价值和文化价值,形成批判性思维习惯,崇尚数学的理性精神,体验数学的审美意义,从而进一步树立辩证唯物主义和历史唯物主义的世界观。

我们用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新的关系,体现基础、时代、典型性、可接受性等。并具有以下特征:

1.“亲和力”:以生动活泼的方式激发兴趣和美感,激发学习热情。

2.“问题”:用适时问题指导数学活动,培养问题意识,培养创新精神。

3.“科学”与“思想性”:通过不同数学内容的联系与启发,强调类比、通俗化、特殊化、转化等思想方法的应用,学会数学思维,提高数学思维能力,培养理性精神。

4.“时代性”和“适用性”:用具有时代性和现实感的材料创设情境,加强数学活动,培养应用意识。

1.选择内容典型、丰富、熟悉的材料,用生动活泼的语言,创造能反映数学、数学思想方法、数学应用的学习情境的概念和结论,让学生对数学产生亲切感,引发学生“看发生了什么”的冲动,以培养兴趣。

2.通过“观察”、“思考”、“探究”等栏目,可以激发学生的思考和探究活动,提高学生的学习效率

高一班学习不错,但是学生自我意识差,自控力弱,需要时不时提醒学生培养自我意识。上课最大的问题是计算能力差。学生不喜欢算题。他们只关注想法。因此,在未来的教学中,重点是培养学生的计算能力,进一步提高他们的思维能力。同时,由于初中课程改革,高中教材与初中教材衔接不够强,需要在新的教学时间补充一些内容。所以时间可能还是比较紧。同时它的基础比较薄弱,只能在教学中先注重基础再注重基础,力求每节课落实一个知识点,掌握一个知识点。

1.激发学生的学习兴趣。通过数学活动、故事、吸引人的课堂、合理的要求、师生对话等方式,可以建立学生的学习信心,在主观行动下提高和提高学生的学习兴趣。

2.注意从实例出发,从感性走向理性;注意运用比较的方法反复比较相似的概念;注意结合直观的图形来说明抽象的知识;关注已有知识,启发学生思考。

3.加强学生逻辑思维能力的培养,就是解决实际问题,培养和提高学生的自学能力,养成善于分析问题的习惯,进行辩证唯物主义教育。

4.掌握公式的推导和内部联系;加强审查和检查工作;掌握典型例题的分析,讲解解题的关键和基本方法,注重提高学生分析问题的能力。

5.自始至终实施整体建设,和谐教学。

6.注重数学应用意识和能力的培养。

推荐数学教学策略设计简短二

一、教学目标

1 知识与技能

〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件

〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值

2 过程与方法

结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。

3 情感与价值

感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。

二、重点:利用导数求函数的极值

难点:函数在某点取得极值的必要条件与充分条件

三、教学基本流程

回忆函数的单调性与导数的关系,与已有知识的联系

提出问题,激发求知欲

组织学生自主探索,获得函数的极值定义

通过例题和练习,深化提高对函数的极值定义的理解

四、教学过程

〈一〉创设情景,导入新课

1、通过上节课的学习,导数和函数单调性的关系是什么?

(提问c类学生回答,a,b类学生做补充)

函数的极值与导数教案 2、观察图1.3.8表示高台跳水运动员的高度h随时间t变化的函数函数的极值与导数教案=-4.9t2 6.5t 10的图象,回答以下问题

函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案

函数的极值与导数教案

函数的极值与导数教案函数的极值与导数教案

(1)当t=a时,高台跳水运动员距水面的高度,那么函数函数的极值与导数教案在t=a处的导数是多少呢?

(2)在点t=a附近的图象有什么特点?

(3)点t=a附近的导数符号有什么变化规律?

共同归纳: 函数h(t)在a点处h/(a)=0,在t=a的附近,当t0;当ta时,函数函数的极值与导数教案单调递减, 函数的极值与导数教案 0,即当t在a的附近从小到大经过a时,函数的极值与导数教案 先正后负,且函数的极值与导数教案连续变化,于是h/(a)=0.

3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?

二探索研讨

函数的极值与导数教案1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题:

函数的极值与导数教案(1)函数y=f(x)在a.b点的函数值与这些点附近的函数值有什么关系?

(2) 函数y=f(x)在a.b.点的导数值是多少?

(3)在a.b点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢?

2、极值的定义:

我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;

点b叫做函数y=f(x)的极大值点,f(a)叫做函数y=f(x)的极大值。

极大值点与极小值点称为极值点, 极大值与极小值称为极值.

3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?

充要条件:f(x0)=0且点x0的左右附近的导数值符号要相反

4、引导学生观察图1.3.11,回答以下问题:

(1)找出图中的极点,并说明哪些点为极大值点,哪些点为极小值点?

(2)极大值一定大于极小值吗?

5、随堂练习:

如图是函数y=f(x)的函数,试找出函数y=f(x)的极值点,并指出哪些是极大值点,哪些是极小值点.如果把函数图象改为导函数y=函数的极值与导数教案的图象?

函数的极值与导数教案三讲解例题

例4 求函数函数的极值与导数教案的极值

教师分析:①求f/(x),解出f/(x)=0,找函数极点;②由函数单调性确定在极点x0附近f/(x)的符号,从而确定哪一点是极大值点,哪一点为极小值点,从而求出函数的极值.

学生动手做,教师引导

解:∵函数的极值与导数教案∴函数的极值与导数教案=x2-4=(x-2)(x 2)令函数的极值与导数教案=0,解得x=2,或x=-2.

函数的极值与导数教案

函数的极值与导数教案

下面分两种情况讨论:

(1) 当函数的极值与导数教案0,即x2,或x-2时;

(2) 当函数的极值与导数教案0,即-2x2时. p=""

当x变化时, 函数的极值与导数教案 ,f(x)的变化情况如下表:

x

(-∞,-2)

-2

(-2,2)

2

(2, ∞)

函数的极值与导数教案

0

_

0

f(x)

单调递增

函数的极值与导数教案

函数的极值与导数教案单调递减

函数的极值与导数教案

单调递增

函数的极值与导数教案因此,当x=-2时,f(x)有极大值,且极大值为f(-2)= 函数的极值与导数教案 ;当x=2时,f(x)有极

小值,且极小值为f(2)= 函数的极值与导数教案

函数函数的极值与导数教案的图象如:

函数的极值与导数教案归纳:求函数y=f(x)极值的方法是:

函数的极值与导数教案1求函数的极值与导数教案,解方程函数的极值与导数教案=0,当函数的极值与导数教案=0时:

(1) 如果在x0附近的左边函数的极值与导数教案0,右边函数的极值与导数教案0,那么f(x0)是极大值.

(2) 如果在x0附近的左边函数的极值与导数教案0,右边函数的极值与导数教案0,那么f(x0)是极小值

四课堂练习

1、求函数f(x)=3x-x3的极值

2、思考:已知函数f(x)=ax3 bx2-2x在x=-2,x=1处取得极值,

求函数f(x)的解析式及单调区间。

c类学生做第1题,a,b类学生在第1,2题。

五课后思考题

1、若函数f(x)=x3-3bx 3b在(0,1)内有极小值,求实数b的范围。

2、已知f(x)=x3 ax2 (a b)x 1有极大值和极小值,求实数a的范围。

六课堂小结

1、函数极值的定义

2、函数极值求解步骤

3、一个点为函数的极值点的充要条件。

七作业 p32 5 ① ④

教学反思

本节的教学内容是导数的极值,有了上节课导数的单调性作铺垫,借助函数图形的直观性探索归纳出导数的极值定义,利用定义求函数的极值.教学反馈中主要是书写格式存在着问题.为了统一要求主张用列表的方式表示,刚开始学生都不愿接受这种格式,但随着几道例题与练习题的展示,学生体会到列表方式的简便,同时为能够快速判断导数的正负,我要求学生尽量把导数因式分解.本节课的难点是函数在某点取得极值的必要条件与充分条件,为了说明这一点多举几个例题是很有必要的.在解答过程中学生还暴露出对复杂函数的求导的准确率比较底,以及求函数的极值的过程板书仍不规范,看样子这些方面还要不断加强训练函数的极值与导数教案

研讨评议

教学内容整体设计合理,重点突出,难点突破,充分体现教师为主导,学生为主体的双主体课堂地位,充分调动学生的积极性,教师合理清晰的引导思路,使学生的数学思维得到培养和提高,教学内容容量与难度适中,符合学情,并关注学生的个体差异,使不同程度的学生都得到不同效果的收获。

推荐数学教学策略设计简短三

教材分析:

本学期我任教05财会(3)班数学,所选的教材是人民教育出版社职业教育中心编著的《数学(基础版)》。该教材是在原有职业高中数学教材的基础上,依据国家教育部新制定的《中等职业学校数学教学大纲(试行)》重新编写的,具有以下特点:

1.注重基础:

“大纲”对传统的初等数学教育内容进行了精选,把理论上、方法上以及代生产与生活中得到广泛应用的知识作为各专业必学的基本内容。根据“大纲”要求,把函数与几何,以及研究函数与几何的方法作为教材的核心内容。

2.降低知识起点

多数中职学生对学过的数学知识需要复习与提高,才能顺利进入中职阶段的数学学习。这套数学教材编写从学生的实际出发,提高中职学生的数学素质,使多数学生能完成“大纲”中规定的教学要求,以保证中职学生能达到高中阶段的基本数学水准。

3.增加较大的使用弹性

考虑中等职业学校专业的多样性,各对数学能力的要求也不相同,教学要求给出了较大的选择范围,增加了教学的弹性。教材中给出了三个层次:一是必学的内容分两种教学要求(在教参中指出);二是教材中配备一些难度较大的习题,供学有余力的学生去做,培养这些学生的解题能力;三是编写了选学内容,选学内容主要是深化基本内容所学知识和应用基本内容解决实际问题的能力。

4.注重数学应用意识的培养

每章专设应用一节,列举数学在生活实际、现代科学和生产中应用的例子,培养学生用数学解决实际问题的意识和能力。

5.注重培养学生使用计算机工具的能力

在“大纲”中,要求培养学生使用基本计算工具的恩能够里。这就要求学生掌握使用计数器的技能,所以在新教材中

数学教学策略设计简短 小学数学教学策略设计(8篇)

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?