方程思想心得体会如何写 方程思想方法总结(六篇)
体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?以下是我帮大家整理的最新心得体会范文大全,希望能够帮助到大家,我们一起来看一看吧。
关于方程思想心得体会如何写一
(1)了解角的相关概念及垂直的概念.
(2)了解平面直角坐标系的概念,掌握一次函数和它的图象,并会求解析式.
(3)了解平行线的性质和判定,并应用其解题.
(4)会解二元一次方程组,能根据具体问题中的数另关系列出二元一次方程组并求解。
(5)了解确定事件与不确定事件的概念,并会判定哪些是确定事件或不确定事件。
(6)了解正整数幂的运算性质并会运用它们运算.
(7)了解单项式与多项式,多项式与多项式相乘的法则
(8)了解三角形的内角、外角及其外角等相关概念.
(9)了解圆的相关概念并会画圆.
2、基本技能、能力的培养要求:
(1)、学会利用转化的思想方法解决问题。
(2)、培养学生从具体到抽象,从特殊到一般的抽象概括能力。
(3)、培养学生分类的数学思想,学会类比的数学观念。
(4)、体验数形结合思想方法。
(5)、培养学生的自学能力,提高课堂效率。
(6)、培养推理论证能力。
关于方程思想心得体会如何写二
【知识与技能】
理解并掌握一元二次方程求根公式的推导过程,能正确、熟练地运用公式法解一元二次方程。
【过程与方法】
经历探究求根公式的过程,发展合情推理能力,提高运算能力并养成良好的运算习惯。
【情感、态度与价值观】
通过公式法解一元二次方程,感受解法的多样性,在学习活动中获取成功的体验。
【教学重点】
用公式法解一元二次方程。
【教学难点】
一元二次方程求根公式的推导。
(一)引入新课
复习回顾:用配方法解一元二次方程。
配方,得
(四)小结作业
小结:引导学生做知识总结:本节课学习了什么叫公式法,怎样运用公式法解一元二次方程。如何判断一个方程是否有实数根?
作业:课后练习题,试着用多种方法解答。
略
关于方程思想心得体会如何写三
数学课程标准(实验稿)改变了小学阶段解方程方法的教学要求,采用了等式的性质来教学解方程。现将解方程的新旧方法举例如下:
老方法:
x 4 = 20
x = 20-4
依据运算之间的关系:一个加数等于和减另一个加数。
新方法:
x 4 = 20
x 4-4=20-4
依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。
改革的原因(摘自教学参考书):
新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。
从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。
那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题? 在我的教学过程中真的出现了问题 。
1.无法解如a-x=b和a÷x=b此类的方程
新教材认为,利用等式基本性质解方程后,解象x a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与x÷a=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓“相比原来方法,思路更为统一”的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和a÷x=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而a÷x=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。
我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或a÷x=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x b=a或bx=a的方程。但我认为,这样的处理方法,有时更 会无法避免地直接和方程思想发生矛盾。
如“3千克梨比5千克桃子贵0.5元。梨每千克2.5元,桃子每千克多少元?”合理的做法应是“设桃子每千克x元”,从顺向思考,列出方程为“2.5×3-5x=0.5”。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成“5x 0.5=2.5×3”之类的方程。又如:课本第62页中的“爸爸比小明大28岁,小明х岁,爸爸40岁。”很多学生根据“爸爸比小明大28岁”列出40-х=28,可是无法求解,所以又转成х 28=40。
很明显,第二个方程是和方程思想的基本理念相违背的。我们知道,方程最大的意义,就是让未知数参与进式子,使考虑问题更加直接自然。为实现这个目标,很重要的一点,就是列式时应尽量顺向思考,以降低思考的难度。这是体现方程方法的优越性必然要求。事实上,如果学生能够列成“5x 0.5=2.5×3”“ х 28=40”那就说明他已经非常熟悉
方程思想心得体会如何写 方程思想方法总结(六篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。