大数据数字经济心得体会及感悟 大数据的感悟(5篇)
从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。大家想知道怎么样才能写得一篇好的心得体会吗?下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。
描写大数据数字经济心得体会及感悟一
1.参与大数据分析,个性化推荐等系统的设计和开发;
2.负责数据挖掘及推荐系统相关模型、算法的设计与开发;
3.搭建高扩展高性能的数据分析模型库,作为数据分析团队的基础工具;
4.提供大数据,推荐,搜索等相关技术研究成果、产品技术平台设计;
希望具备的条件:
1.熟练unix/linux操作系统,熟悉掌握常用shell/python/perl等脚本工具;
2.对统计学和数据挖掘算法有较为深刻的理解,熟悉决策树、聚类、逻辑回归、关联分析、svm、贝叶斯等数据挖掘算法
3.具备良好的业务挖掘和分析能力,能针对实际业务中的数据进行统计建模分析
描写大数据数字经济心得体会及感悟二
职责:
i、负责hadoop集群的安装部署、维护及调优:
2、负责spark的安装邮署、维护及调优:
3、负责基于大数据平台开发的应用系统的部署、日常维护、调优和问题处理
4、负责elk 平台的部署及维护。
技能要求:
1 、2年以上大数据运维工仵经验;
2、熟悉hadoop生态圈技术栈及各个组件原理:
⒊、熟练掌握hdfs、hive、hbase、sρark、sqooρ 等组件,具备部署、维护、调优的能力:
4、热悉kylin技术原理,有一定的维护经验优先:
5、掌掇elk的日常维护技能·有一定的维护.经验优先:
6、有一定的hql/sql 性能调优经验;
7、具备基本的 java、python等语言开发能力优先:
8、有较强的沟通、团队协作及学习能力。
描写大数据数字经济心得体会及感悟三
高校教育大数据的分析挖掘与利用
摘 要,本文从高校教育大数据的汇聚融合与挖掘应用的角度,分析了如何运用教育大数据技术推动大学管理和人才培养的创新改革的思路和方法。首先,分析了教育大数据对高校现代化、精细化、规范化管理的4个价值,其次,给出了高等教育大数据技术平台的基本技术架构,第三,结合教育大数据实际应用,介绍了陕西省高等教育质量监管大数据中心、mooc中国、西安交通大学教学质量综合监控与评价三个典型案例,最后,提出了教育大数据分析挖掘中的3项基础性关键技术
关键词,高等教育,大数据,分析,挖掘
高校大数据分析挖掘至少有四个典型价值, 一是使得大学的管理更加精准高效,可以朝着智慧治理、分类管理、过程监控、趋势预测、风险预警的方向发展,真正实现基于大数据分析规律的精准治理,改变管理的模糊性, 二是可以更加准确地分析评价课堂教学的质量,过去我们对课堂、对老师的评价是定性和模糊的,而在大数据智慧课堂的模式下,可以真正实现采集样本的持久化,采集方式
的多元化,挖掘手段的多样化,分析技术多维度,通过这些方式可以提高课堂教学的质量, 三是使得教和学更加智慧,更加有效。对学生来说,老师可以了解学生学习的进展情况,发现学习兴趣点,以及对老师讲的哪些内容理解或者不理解,学习路径分析及课程推荐等等。对教师而言,不仅可以跨校跨地域分享他人的优秀课程,而且可以对学习者进行精准分类,进行个性化指导, 四是资源服务的个性化、精准化推荐与服务,学习绩效的个性化评价,以及个性化教学管理,个性化手机内容推送等等,这些功能将有效提升教与学的效率和质量
首先,我们对高等教育大数据技术平台有一个总体的顶层设计,如图1所示。这不仅是学校自己要有一个大数据的管理平台或者是数据中心,而且也是面向区域乃至全国的平台。教育部评估中心正在努力建立国家级高等教育教学质量监控大数据中心,陕西省也是这样考虑的。数据来自高校、教育管理部门以及行业、第三方、企业用人单位等等各方面采集的数据,该数据平台既有大学的业务数据、课程资源,也有政府部门的统计数据,还有学生网上学习的日志数据,用户产生的ugc数据,比如微信、微博、论坛等等的数据,基于大数据平台,开展面向学习者、面向高等教育管理机构、教师、高校等提供服务,并和教育部评估中心、主管部门等
进行数据交换与对接
显然,这样一个大数据平台必须是一个高性能的计算平台,没有这样的基础设施一切无从谈起,所以去年我们学校花了很大的力气做了两件事,一个是把校内二级单位原来小的集群计算进行整合,形成学校统一的高性能云计算平台,既面向校内的科学研究、人才培养提供服务,其实也可以为社会提供合作共建共享模式。目前,我们已建立了一种自我造血机制,四两拨千斤,以这个平台吸引更多的外部资源,努力扩展平台的性能和应用
目前,我校的高性能平台除了应用于材料、航天、能动、信息等大型科学计算之外,还开展了以下三项典型的大数据应用
案例1,陕西省高等教育质量监控与评估大数据应用
图2所示的是陕西省高等教育的整体架构。其数据基础是来自陕西省100多所高校的各种办学状态数据,有将近700个表格,以及陕西省教育厅各个职能部处的各种各样的管理数据,此外还有行业第三方提供的数据,包括招生、就业数据等等,这个平台上我们开展预测预警、查询在线分析、信息发布、统计决策等等,主要是为省级教育管理部门、评估机构、教育管理机构提供各种各样的办学状况的分析、统计、关联分析
建设全省高等教育大数据服务平台,实时采集各高校的办学状态数据,其根本目的是为了汇聚全省各高校的办学状态数据,打破数据孤岛,融合各方数据,实现横向关联比较、纵向历史分析,提供精准服务,支持科学决策
首先,该平台面向省教育厅提供了11项功能,从根本上解决了原来各处室间的数据孤岛的问题,实现了数据融合,横向关联,纵向融通,这个数据和各个高校是实时融通的,为省教育厅领导和职能部处提供了领导仪表盘、各职能处室的专项服务、81张高基表及年报年鉴表格的自动生成、绩效分析、招生就业及办学指标计算、教育评估等功能,从根本上解决了数据碎片化及其治理问题
其次,面向全省高校辅助决策,为高校领导以及校内各个职能部处提供了系列功能,包括办学情况综合分析和在线查询,专业结构分析比较,校级的教学质量监控评测体系,教师管理等等,这些功能非常实用,这是大学实现精细化、规范化、现代化管理的必备基础。以我校为例,我们过去教师的数据可能在人事处、教务处、科研院等学校的职能部门,采取本平台以后,把教师有关的所有数据都进行了融合,打通了所有原来割裂的数据。从去年开始,我们学校的职称评聘,年度考核全部基于这一平台,全部在大数据里,建立健全了基于数据驱动的精准化服务,解决了数据碎片化历史遗留问题,实现了从管理信息化向服务信息化的根本转变
第三,为本科教育教学评估及专业认证提供技术支撑。鉴于本平台能提供比较全面的高校办学状态数据,便于专家在进校之前全面系统地掌握学校办学的情况,找到问题,精准查看验证,提高效率,给高等教育评估提供了重要支持。基于本平台,我们成立了中国西部高等教育评估中心,接受陕西省教育厅指派的省属本科高校的审核评估和专业论证。如果没有这一高等教育大数据平台的支撑,工作量和难度是极其巨大的,甚至难以实现
案例2,mooc中国技术平台
mooc中国成立于2015年1月,到目前为止已经有121所高校加入,理事单位40家,会员单位80家。该平台的宗旨是,做政府想做的,做社会愿意做的,做单一高校做不了的事情。例如,真正解决校际资源共享、学分互认等,开拓远程教育国际化等未来发展的难题。 图3给出了mooc中国的技术框架。其核心是互联网 教育,实现互联网教育从1.0到2.0的升级。基于这一平台,既要开展网络教育业务的国际化,比如我们牵头成立的“丝路大学联盟”,其目的之一是借助mooc中国平台,实现网络教育业务的国际化,通过mooc中国平台,面向“一带一路”国家开展开放教育和技能培训
到目前为止,mooc中国已经有了9911门课程,用户将近600万,其中光it培训的有500多万,学历教育在读
学生50多万
案例3,西安交大教育教学大数据分析挖掘与应用
学校非常重视教育信息化技术融入和应用到教育教学之中,去年一次性建成了80个智能教室,把物联网技术、云计算技术应用于智能教室和教学一线,基于物联网技术实现教室设备的集中管理、智能控制,同时,将互联网技术深度融入到教室的管理当中,除了多媒体的直播录制功能以外,还提供了学生考勤和专家的精准督导,通过云平台来集中管理各个教室,比如说开投影机、关电源、关多媒体设备等等,都可以通过后端的云平台集中管控,真正实现教室管理的数字化、智能化、精细化,提升了教学保障的能力,也大大提高了教室管理的效率。更重要的是,这些教学的过程数据可以全程采集下来,获得数据,有了这些数据,就可以做精准化分析服务,建立西安交大教学质量大数据监测中心 目前,我校的教学大数据主要包括两大部分,一是教师在授课过程中的全程录制的课堂实况,二是学生在学习过程中产生的大量日志数据。基于这个平台,我们可以开展教育教学的大数据关联分析,开展课堂教学质量的综合评价,实现正面激励、负面惩戒、精准督导,实现教学评价从模糊宏观到量化精准、从每学期制到持续常态、从部分随机到全面覆盖、从事后评价到实时动态的根本转变。通过评价激励老师敬畏课堂,评选精品课堂、示范课堂,在全校内进行正面
表彰,另外也作为教学质量评价的重要依据,包括教师的职称晋升,评选最喜爱的老师等等
此外,本系统还为学院领导和管理部门提供了针对性的信息服务与决策支持,以数据说话,量化分析,改变了以前我们的模糊评价,采取多维度、全覆盖、持续化、精细化的过程评价与监控
首先,介绍一下大数据人工智能的基本原理。前段时间,alphago战胜世界围棋冠军这一故事炒得很热。这对我们的教育科研工作者提出了一个重要的课题,到底人工智能会不会战胜人类的智能,将来教师存在的主要价值是否还有必要,863计划正在研究一个项目,到2020年,人工智能软件参加高考得分要超过一本线,这就是说,计算机教出来的机器软件参加高考都能达到一本线以上。这就引起我们的思考,这是一个深层次的方向性问题。当然我们今天不是谈这个问题,而是我们要看看alphago的原理,其核心是价值计算函数,用收益函数来判断围棋下一步该落子到哪里其收益是最大的,其中采用了人工智能深度学习方法。alphago并非天生聪明,其实他的智慧是分三步完成的, 第一步,给alphago输入了3000万个人类围棋高手的棋谱和走法,任何一个人是不可能记住3000万个棋局的,只有人工智能才能记住 第二步,alphago自己和自己对弈,在对弈过程中找到自己的薄弱点,进而改进和完善,这其实和人的学习原理类似
第三步,才是人机对弈,从职业选手到世界围棋冠军,通过这样不断的对弈完善算法,校正学习,使得alphago具有强大的智能计算能力。alphago的难点在哪,其关键在于在一个巨大的落子空间选一个最大的收益点,或者落子点,称之为movepicker,,函数,这个空间很大,有10170次方,在如此庞大的计算空间中选择最优函数,只能依靠高性能计算平台
alphago为我们研究大数据问题提供了思路和启发。我们在研究教育大数据问题中需要着力攻克以下理论与技术难题
第一,大数据造成了严重的认知碎片化问题。比如,大家在百度搜糖尿病会检索出4440万个数据源,谁也看不过来,并且里面还有一大堆真假难辩的数据。所以,碎片化知识的聚合是一个非常基础的难题,高度的碎片化降低了知识的可用性,造成了分布性、动态化、低质化、无序化等典型的问题
一方面是知识的碎片化,另一方面是每个人的兴趣和需求还不一样。所以,资源的碎片化整合以及个性化推荐是今后人工智能中的关键问题。我们的思路是,一方面,我们要
从资源的角度把无序、分散、低质的资源进一步重组以后形成知识点,形成有序的知识地图,另一方面,要对学习过程进行跟踪,实现兴趣、个性、情感等方面的动态分析与挖掘,两者结合起来,建立基于用户兴趣和个性的资源推荐,最后实现个性化精准过滤,通过知识地图面向用户提供导航学习,从而缓碎片化知识的问题。开展这一研究也要建立庞大的基础数据,就像刚才讲的alphago,光靠智能软件肯定不可能那么聪明,需要建立庞大的知识地图、知识图谱,并将其放到了国际开源社区和开放数据平台之上 第二,碎片化知识的聚合问题。其目的是解决“既见树木,又见森林”的问题,破解“学习迷航”、“认知过载”的问题。我们正在承担国家自然科学基金重点项目,研究如何将多源、片面、无序的碎片化知识聚合成符合人类认知的知识森林,找出主题与主题之间的认知关系,最后形成一个知识森林,其中需要解决主题分面树的生成、碎片化知识的装配、知识森林生成、学习路径选择与导航等有关知识地图、知识图谱构建与应用等许多基础性关键技术
第三,学习行为的分析和挖掘技术。网上学习最大的好处我们可以把教师和学生所有的教与学的行为记录下来,讨论、作业、习题、笔记及进度记录下来,有了这些数据,我们可以进行后续分析,开展学习行为的特征识别和规律发现等等,既可以跟踪挖掘某个个体的学习规律,也可以找出一
个群体、一个小组的特征和规律。针对不同的课程,开展课程点击率、学习人群、知识关注点、学习时间等的分析与跟踪,刻画一个学生学习的过程,从时间、空间和课程知识导航的角度,甚至围绕某个知识点,研究学习者的特征、行为、交互等相互之间的关系,为老师深化课程改革、探索以学生为中心的教学设计具有非常重要的意义
教育是全人类、全社会发展的基础性事业,随着互联网 技术全面渗透和深度融入教育教学,不仅产生了大量的课程资源和学习内容,而且还产生了巨量的教育教学管理数据、行为数据、服务数据,蕴藏着巨大的价值,亟需我们开展深入研究,可谓前景广阔,挑战巨大,
,编辑,王晓明,
描写大数据数字经济心得体会及感悟四
《用四舍五入法把数改写成用“万”作单位的数》,这节课并不简单。学生既要学会四舍五入法,又要学会用四舍五入法对数进行改写,而且还并非仅仅是课题中所写的改写成以“万”作单位的数,还需要根据要求改写成以“千”、“百”等作单位的数。而教材的编排意图显然是充分利用学生前面学过的把整万的数改写成“万”作单位的数的经验,力图让学生经历先把一个大数用四舍五入法省略万后面的尾数求出近似的整万数,再改写成用“万”作单位的数的过程。显然,前面的过程是关键。而四舍五入法,四舍比较简单,难的是五入。
从课堂反应及学生的作业批改来看,学生对这一课的掌握情况很不好,出现了一些问题。如:反思学生出现的问题,我觉得是因为我的教学不够严谨、细致,才导致问题的面这么多而广。
原因一、 没有激发部分学生的兴趣
原因二、 上课内容比较抽象,后进生难以理解,故此没能投入学习互动中来。
改进后,二次教学设计。
汽车价格是193500元,558800,( ),( )
理清几个概念。
1、什么叫尾数?1389567万位(千位、百位)后面的尾数分别是什么?
2、“省略”是什么意思?是像语文里讲的一样直接省略不写吗?(区别语数中“省略”一词概念的不同)
3、那么,什么情况下直接舍去尾数,什么情况下要向前一位进1呢?关键看哪一位?
4、辩证思考:193500为什么不看成20万?558800为什么不看成55万?
5、拓展:怎么改变这个价格,使它能约等于55万?
预设:生1“千位上改成4、3、2、1、0”,师追问“百位、十位、个位上的数呢?最大是多少?最小是多少?”
生2:万位上改成4,千位上改成5、6、7、8、9。
师板书各情况,并追问“百位、十位、个位上的数呢?最大是多少?最小是多少?”
小结:约等于55万的数,最大的是四舍得到的554999,最小的是五入得到的545000。
6、完成作业本第6页第5题。
7、完成练习二。
一步一步地使学生明白“把12756省略万位后面的尾数求近似数,就是把1后面的尾数都去掉,并写0占位,写成10000,但是题目要的是“万”做单位,所以还要把10000改写成1万。这样就使得学生对求近似数的每一步的用意都有一个清楚的认识。
通过这节课的反思,我认识到教学一定要顺应学生的认知特点和过程来进行,每一步的设计一定要从学生的角度来思考,从教学的重难点来分析。那种“填鸭式”的教学方式,不仅苦的是学生,害的是学生,其实受害最大是老师,因为课后你得利用更多的时间来辅导那些知识上有缺漏的学生。
描写大数据数字经济心得体会及感悟五
一、移动互联网产品的方法论
移动互联网产品经理的主要任务是服务人群,主要工作是研究人类群落的行为模式。用产品为人群提供服务,并且要预判人群卷入之后行为模式的变化。
从方法论的角度思考,人类群落也处于演进过程中。早期人类是村落人群模式,村落中的每个人认识每个人,人际关系以非常实际的亲戚关系和职业关系为纽带。现代人类是社会化人群模式,人群数目极大增长,人际关系依托于抽象的社会生产关系:契约、合同、雇佣关系。。。。。。产品经理曾经是村落里的铁匠,他认识每个村民,每个村民也认识他。而在今天,产品经理完全退居幕后,他不可能认识每一个用户,用户甚至不知道这个人的存在。
因此,产品经理在方法论上存在着各种选择:他可以提供某种基于熟人群落的旧式服务,以增进熟人群落的情感为产品目的;他也可以提供某种基于大数人群的新式基础服务,以便于人们彼此认识,协调工作,从自利为基础的无序活动中自组织处有序活动;或者,他也可以提供某种中间类型的产品,帮助人们平滑度过两种人群模式,减少由于变化而产生的阵痛。
但是,产品经理的主流应该是服务于未来。先于人众接触新技术新知识,并把这种认知转化为产品,利用产品提供现代人类社会中的各种人群。尽一切可能,降低学习成本,利用人类的本能设计产品,使得人群得以顺利“滑入”新的产品使用场景。
在所有这一切之上,产品经理的目标应该是实现社会美和善和总量。
二、移动互联网产品经理的素养
1、敏锐感知潮流变化。移动互联网产品会从相对匮乏时代进入相对富足时代,用户可以选择的产品会随时日流逝而日渐增加,产品终将成为一种时尚业。产品经理若是沉溺于各种新鲜玩意儿之中,追逐新奇,很可能错过真实的时代潮流,无法把握人群的真实需求。
2、放弃理性思维。移动互联网的特点是变化极快,传统的分析用户,调研市场,制定产品三年规划,在新的时代里已经落伍。人类群落本身也在迁移演变,产品经理更应该依靠直觉和感性,而非图表和分析,把握用户需求。产品经理永远都应该是文艺青年,而非理性青年。
3、海量的实践。尽管移动互联网方兴未艾,没有任何人可以自称是领域内的专家。但是,这不意味着存在天降天才的可能。《异类》中提出的一万小时定律,同样适用于产品经理。他们需要超过千次的产品实践,才能称得上是了解产品设计,拥有解决问题的能力。
4、博而不专的积累。美术、音乐、阅读、摄影、旅游等等文艺行为貌似不能直接转化为生产力,但是合格的产品经理需要广博的知识储备,以此才能了解和认识大数量的人群,理解时代的审美,让自己的所思所感符合普通用户的思维范式。以此为基础,设计的产品才不会脱离人群。
5、负责的态度。拥有合适的方法论和合适的素养,成功的产品经理还应该有对自己和产品负责的态度,唯其如此,产品经理才能足够偏执,清楚地知道自己究竟要做什么,抵挡住来自上级和绩效考核的压力,按照自己的意志不变形、不妥协地执行产品策划。
三、移动互联网产品设计的原则
1、绝不考虑web形态,一切考虑都基于app。
2、产品优先级
(1)有趣高于功能,产品必须有趣,必须cool,才可能形成传播和口碑。
(2)功能高于交互,明确的功能满足明确的需求,用户不会在意炫酷交互效果。
(3)交互高于ui。便捷、快速的交互设计为先,围绕具体功能实现ui,而非有优质ui方案为此专门设立一个功能。
3、聚焦:一个app只做一件事情,一个大而全的app意味着全面的平庸。
4、永远一维化:让用户在一个维度里解决具体的问题,twitter的timeline就是一个好的范例。而类似facebook、path那样的滑出式菜单则是一个灾难,因为这使得产品拥有两个维度,加大了用户理解的困难。
5、保持主干清晰,枝干适度。产品的主要功能架构是产品的骨骼,它应该尽量保持简单、明了,不可以轻易变更,让用户无所适从。次要功能丰富主干,不可以喧宾夺主,尽量隐藏起来,而不要放在一级页面。
6、不要让用户选择。同一个页面之内,有多个入口;同一个功能,有多个实现方式;同一个界面,有多个展示方式。这对于用户来说是一种痛苦而非享受,因为他们只会因此而感觉到困惑和恐惧。用户宁可采取重复操作漫长而固定的操作路径,也不愿意使用多变的快捷方式。
7、隐藏技术,永远展现简单的、人性化的、符合人类直觉的界面。开发不可以为了炫技而展示功能,产品不可以为了炫耀而功能堆砌。
8、拒绝个性化。除了依靠设计特色而立身的app,换肤一类的个性化设计,除了让产品经理幻觉自己做了许多工作而自我满足之外,没有任何价值。它只能证明产品经理对自己的产品不自信,因为自信的产品经理凭借默认皮肤就可以满足用户。延伸开去,一个好的产品,其功能应该满足全球用户需求,无需为地区做特别定制化。
9、产品一定程度上是为了满足人性中的贪嗔痴,这是用户的痛点。能把握住之后,产品经理应该超越其上,用产品帮助人们得以解脱。
10、想清楚自己究竟要做什么,不去迎合上司,不去讨好用户,不去取悦自己。
11、分类!分类!分类!这是产品经理在确定产品主要功能构架之后,应该为用户做的事情。分类无助于降低产品使用的难度,但是可以帮助用户认知产品和周边的世界。
12、永远围绕功能而做设计,永远不要倒过来做这件事情。
13、一个产品的基本功能不受用户认可,做加法也无济于事。
14、想不清楚一个功能点之前,宁可不做。
15、千万不要让用户在产品里“管理”什么。
四、“自然流”的设计思路
好的产品应该隐藏产品经理的个人意图,用户仅仅凭借直觉和经验就可以顺利使用,以达到“自然而然”的境界。坏的产品提供产品说明书,其恶劣程度和tip和文字说明数量正相关。为此,好的产品经理可以和用户之间平等对话,无需刻意谄媚、恶意卖萌,产品本身就会说话。
自然流的产品,它本身就可以可用户交流。针对用户的任意一个动作,给出的、清晰的反馈,并且能让用户没有任何偏差地接受。它没有人造物的冰冷生硬,而有一种温暖的人性存在。例如在ios中微信?友圈里的评论按钮,按下之后弹出“赞”和“评论”弹窗。这一弹窗快速向左滑动,然后像碰到什么东西一样快速向右反弹一个很小的距离,然后才最终停下来。用户可能根本未能意识到这一微小的停顿,但是在潜意识里,他们会感受到这个弹窗并非全然的人造物。因为根据生活经验,世界上没有任何东西可以从运动直接变到绝对静止。
绝对不要让用户在使用产品的过程中感受到产品经理的伟大和聪慧,产品经理应该完全隐没在产品之中。用户应该可以不假思索地上手,按照设计意图行事,从中获得既定的正向反馈。这一切应该自然而然地发生,用户感觉似乎产品天生就应该这样使用,从产品还未出现之前很久就应该如此。好的产品不会强调自己存在于世界之上,它只是努力地、毫无痕迹地成为这个世界的一部分。
做自然流的产品,必然会在美学上倾向于简单,反逻辑。产品经理必然的选择是做减法,在诸多功能中选取最能解决实际问题的一个,在诸多特性中选取最符合直觉的一项,于是产品也就拥有了优雅和简洁,让人难以忘怀。极简和极自然,使得模仿无法存在,因为没有人可以造出更好的体验来。
大数据数字经济心得体会及感悟 大数据的感悟(5篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。