电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

推理小说征稿范文 推理小说征稿范文大全(9篇)

来源:互联网作者:editor2024-02-042

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。

2023年推理小说征稿范文(精)一

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的`推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△abc中,已知a=32°,b=81.8°,a=42.9cm.解三角形.

例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2.例2.在△abc中,已知a=20cm,b=28cm,a=40°,解三角形.

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△abc中,已知下列条件,解三角形.

(1)a=45°,c=30°,c=10cm

(2)a=60°,b=45°,c=20cm

2.在△abc中,已知下列条件,解三角形.

(1)a=20cm,b=11cm,b=30°

(2)c=54cm,b=39cm,c=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

正弦定理

1正弦定理2证明方法:3利用正弦定理能够解决两类问题:

(1)平面几何法(1)已知两角和一边

(2)向量法(2)已知两边和其中一边的对角

例题

板书设计可以让学生一目了然本节课所学的知识,证明正弦定理的方法以及正弦定理可以解决的两类问题。

2023年推理小说征稿范文(精)二

勾股定理是九年制义务教育教科书八年级下册第十七章的内容,是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

针对八年级学生的知识结构、心理特征及学生的实际情况,可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

(一)知识与技能

1、体验勾股定理的探索过程,会运用勾股定理解决简单的问题。

(二)过程与方法

1、让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般的逻辑推理过程。

(三)情感态度与价值观

1、通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

2、让学生体验自己努力得到结论的成就感,体验数学充满了探索和创造,感受数学之美,探究之趣。

重点:会用勾股定理求直角三角形的边长

难点:勾股定理的探索过程

多媒体课件

6.1第一学时

教学活动

活动1

【导入】欣赏图片,了解历史

2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.

(1)你见过这个图案吗?

(2)你听说过“勾股定理”吗?

学生活动:学生观察图片,发表见解。

资源准备:教师演示多媒体课件

设计意图:从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料。

活动2【讲授】探索勾股定理

探究一:探索直角三角形三边的特殊关系:

(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;

直角三角形1

直角边一a=3

直角边二b=4

斜边c=?

猜想三边关系满足关系:

直角三角形2

直角边一a=5

直角边二b=?

斜边c=13

猜想三边关系满足关系:

(2)猜想:直角三角形的三边关系为

探究二:如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?

思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。

勾股定理:

直角三角形等于

几何语言表述:

如图,在rtδabc中,c=90°,则:

若bc=a,ac=b,ab=c,则上面的定理可以表示为:

学生活动:在独立探究的基础上,学生分组交流。

资源准备:教师演示多媒体课件

设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。

活动3【讲授】证明勾股定理

是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明方法已有几百种之多.下面,我们就来看一看我国数学家赵爽是怎样证明这个命题的。

(1)以直角三角形abc的两条直角边a、b为边作两个正方形.你能通过剪、拼把它拼成弦图的样子吗?

(2)面积分别怎样表示?它们有什么关系呢?

例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的对边

为a、b、c。求证:a2+b2=c2。

分析:

⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,

让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:

4s△ s小正=s大正

2ab+(b-a)2=c2

化简可证

学生活动:学生在独立思考的基础上以小组为单位,动手拼接。

资源准备:教师演示多媒体课件

设计意图:通过拼图活动,调动学生思维的积极性,锻炼学生的动手实践能力,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维。通过对定理的证明,让学生确信定理的正确性。

活动4【练习】简单应用勾股定理解题

1、求下图中字母所代表的正方形的面积

2、求出下列各图中x的值。

3、如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。旗杆折断之前有多高?

4、如图,点c是以ab为直径的半圆上一点,∠acb=90°,ac=3,bc=4,则图中阴影部分的面积是多少?

学生活动:学生独立思考完成

设计意图:教师利用学生已有的知识创设问题情境,有针对性地引导学生进行练习,为学习勾股定理在实际生活中的应用做好铺垫。

活动5【作业】总结反思,布置作业

1、本节课你有哪些收获?

2、还有哪些疑问?

3、作业:略

学生活动:学生归纳、总结谈感受

设计意图:通过小结能为学生从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。

活动6【讲授】板书设计

勾股定理

一、定理:如果直角三角形的两直角边长分别为a,b,

斜边为c,那么

二、证明:略

三、应用:

活动7【作业】教学反思

本节课涉及了大量的有关勾股定理的背景知识,学生可以感受到勾股定理所蕴含的浓郁的数学文化。教学中应聆听学生发言,尊重学生发展。积极引导学生深挖细究,体现过程方法。教学中应着力激发学生学习数学的兴趣,也要注重自主探索与合作交流,同时还要注意数学思想方法的渗透,为学生今后的发展拓展了空间。

17.1勾股定理

课时设计课堂实录

17.1勾股定理

1第一学时教学活动活动1【导入】欣赏图片,了解历史

2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.

(1)你见过这个图案吗?

(2)你听说过“勾股定理”吗?

学生活动:学生观察图片,发表见解。

资源准备:教师演示多媒体课件

设计意图:从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料。

活动2【讲授】探索勾股定理

探究一:探索直角三角形三边的特殊关系:

(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;

直角三角形1

直角边一a=3

直角边二b=4

斜边c=?

猜想三边关系满足关系:

直角三角形2

直角边一a=5

直角边二b=?

斜边c=13

猜想三边关系满足关系:

(2)猜想:直角三角形的三边关系为

探究二:如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?

思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。

勾股定理:

直角三角形等于

几何语言表述:

如图,在rtδabc中,c=90°,则:

若bc=a,ac=b,ab=c,则上面的定理可以表示为:

学生活动:在独立探究的基础上,学生分组交流。

资源准备:教师演示多媒体课件

设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。

活动3【讲授】证明勾股定理

是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明方法已有几百种之多.下面,我们就来看一看我国数学家赵爽是怎样证明这个命题的。

(1)以直角三角形abc的两条直角边a、b为边作两个正方形.你能通过剪、拼把它拼成弦图的样子吗?

(2)面积分别怎样表示?它们有什么关系呢?

例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的对边

为a、b、c。求证:a2+b2=c2。

分析:

⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,

让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:

4s△ s小正=s大正

2ab+(b-a)2=c2

化简可证

学生活动:学生在独立思考的基础上以小组为单位,动手拼接。

资源准备:教师演示多媒体课件

设计意图:通过拼图活动,调动学生思维的积极性,锻炼学生的动手实践能力,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维。通过对定理的证明,让学生确信定理的正确性。

活动4【练习】

推理小说征稿范文 推理小说征稿范文大全(9篇)

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?