电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

关于初三数学复习计划(七篇)

来源:互联网作者:editor2024-02-042

人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。什么样的计划才是有效的呢?下面是小编整理的个人今后的计划范文,欢迎阅读分享,希望对大家有所帮助。

关于初三数学复习计划(精)一

本学期我担任初三年级的数学课教学,周课时8节,圆满完成了既定的教学计划。认真批改学生的作业,统计每次作业批改情况;坚持听课,积极参加小组教研活动,与同事交流教学心得,取长补短。

一、日常教学:

初三甲:

这是我第一次接触初三甲班学生,由于各种原因,我是他们入校以来第四任数学老师,起初我还担心他们会因为中途换老师而排斥我,但孩子们的适应能力,对我的接受与依赖让我倍感欣慰。我利用上班第一周的听课时间熟记每个学生的名字和课堂表现,并通过和上任数学老师刘娥老师和班主任李秀梅老师多次交谈,尽快了解学生的特点,待我正式上课时,我每节课都能熟练地点名不同层次的学生回答问题,这让许多学生惊讶不已,也让他们对数学课兴趣大增。甲班的孩子相对比较活跃,虽然这两个月,我常点名批评调皮捣蛋分子,没少给他们黑脸,但每次经过我的“政治课洗礼”后,他们的表现会好很多,也许是特别希望他们更出色,自己也就更严格。

初三乙:

这是我第二次担任初三乙班的数学教师,时隔半年,我对这20个漂亮可爱的孩子有了更深的认识。他们上课时听课依然非常认真,作业依旧那样工整,一丝不苟,学生一言一行中流露出积极学习的主动性和强烈的求知欲,带给我无限动力,让我倍感自豪。

二、初高中衔接:

由于初高中衔接问题是初三学生升入高中后即将面对的重要问题,为了更好地实现初高中数学衔接,我完成教学任务后,复习了一次函数、正比例函数和反比例函数等重点知识模块,并精心选用几套中考模拟试题对他们的初中知识进行检测,以便学生查漏补缺,然后我通过在课堂上对每一道中考模拟题细致讲解并进行举一反三练习,帮助学生及时复习巩固遗忘的知识。我将初中重点知识模块:实数、整式与分式、方程(组)与不等式(组)及函数等进行大串联,形成一个完整的知识体系,让学生对已学知识做到心中有数,效果显著,学生强烈的求知欲和聪颖乐观带给了我极大的成就感。

三、学习与收获:

本学期我做了20xx年全国各省高考试题10套,及20xx年全国各省市的中考模拟试题10余套。对艺术生初高中数学衔接问题进行了深入探讨研究,将心得体会发表于附中网站。

四、不足与反思:

本学期,由于我大部分精力都在初三45名学生和家中的小妞身上,所以日常中我疏于与各位领导同事联系交流,在工作中难免有一些疏忽不妥之处,在此向各位领导和同事表达歉意。另外,我非常感谢各位领导和同事们对我的包容和帮助,特别是唐老师、韩老师、陆老师、黄老师、王xx老师、李xx老师、马xx、马xx和我们办公室三位老师等等,不仅在工作中为我调整、分担了任务,还经常为我提供宝贵的育儿经,让我特别感动。最后,感谢李xx和尹xx两位班主任对我工作的支持与配合,让我快速融入到初三学生的小集体中,实现完美转型。

以上是我的总结,请大家批评指正。谢谢!

关于初三数学复习计划(精)二


(一)内容

一元二次方程的概念,一元二次方程的一般形式.

(二)内容解析

一元二次方程是方程在一元一次方程基础上 “次”的推广,同时它是解决诸多实际问题的需要,为勾股定理、相似等知识提供运算工具,是二次函数的基础.

针对一系列实际问题,建立方程,引导学生观察这些方程的共同特点,从而归纳得出一元二次方程的概念及一般形式.在这个过程中,通过归纳具体方程的共同特点,得出一元二次方程的概念,体现了研究代数学问题的一般方法;一般形式ax2 bx c=0也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果;a≠0的条件是确保满足 “二次”的要求,从另一个侧面为理解一元二次方程的概念提供了契机.

(一)教学目标

1.体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念;

2.了解一元二次方程的一般形式,会将一元二次方程化成一般形式.

(二)目标解析

1.通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程.学生能举例说明一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,体会到学习的必要性;

2.将不同形式的一元二次方程统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a≠0的条件,完善一元二次方程的概念.学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数,并能确定简单的字母系数方程为一元二次方程的条件.

一元二次方程是学生学习的第四个方程知识,首先在初一学习了一元一次方程,接着扩展“元”得到二元一次、三元一次方程,完成了二元一次方程组的学习,初二分式的教学,使得对实际问题的刻画从整式推广到有理式,分式方程得以出现,到一元二次方程第一次实现 “次”的提升.学生必然存在着疑问,为什么有些背景列得的方程是二次的呢?教学中要直面学生的疑问,显化学生的疑问,启发学生自己解释疑问,才能避免“灌输”,体现知识存在的必要性,增强学好的信念.

培养建模思想,进一步提升数学符号语言的应用能力, 让学生自己概括出一元二次方程的概念,得出一般形式,对初三学生是必须的,也是适可的.

本课的教学重点应该放在形成一元二次方程概念的过程上,不能草草给出方程的概念就反复辨析练习,在概念的理解上要下功夫.

本课的教学难点是一元二次方程的概念.

(一)创设情境,引入新知

教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:

问题1.这个方程属于我们学过的某一类方程吗?

师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名.

【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.

问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?

师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境.

【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解.部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题.

(二)拓宽情境,概括概念

给出课本问题1、问题2的两个实际问题,设未知数,建立方程.

问题1 如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?

个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场.

由此,我们可以列出方程______________,化简得________________.

问题3. 这些方程是几元几次方程?

师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模.将列得的方程化简整理,判断出方程的次数.

【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解.让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习.

问题4.这些方程是什么方程?

师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.

1.一元二次方程的概念:

等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程.

2.一元二次方程的一般形式是

是二次项,a是二次项系数;

开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果.

问题6. 下列方程哪些是一元二次方程?

例1.下列方程哪些是一元二次方程?

(1)

;

(3)

;

(5)

.

答案(2)(5)(6).

师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a≠0条件加深认识.

【设计意图】补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识.

问题7.指出下列方程的二次项、一次项和常数项及它们的系数.

例2. 将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:

(1)

师生活动: (1)将方程

移项,合并同类项得:

二次项系数是3;一次项是

常数项是

过程略.

例3.关于x的方程

时此方程为一元二次方程;

时此方程为一元一次方程.

【设计意图】在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆.

(四)巩固概念,学以致用

教科书第4页: 练习

【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况.

(五)归纳小结,反思提高

请学生总结今天这节课所学内容,通过对比之前所学其它方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误.

(六)布置作业:教科书习题21.1

复习巩固:第1,2,3题.

1.下列方程哪些是关于x的一元二次方程

(1)

;(3)

.

【设计意图】考查对一元二次方程概念的理解.

2.关于

是一元二次方程,则( ).

a.

c.

【设计意图】考查

的一元二次方程

关于初三数学复习计划(精)三

初中数学总复习是完成初中三年数学教学任务之后的一个系统、完善、深化所学内容的关键环节。重视并认真完成这个阶段的教学任务,不仅有利于升学学生巩固、消化、归纳数学基础知识,提高分析、解决问题的能力,而且有利于就业学生的实际运用。同时是对学习基础较差学生达到查缺补漏,掌握教材内容的再学习。因此特制订本计划,以便实施教学总复习有计划、有步骤。

一、紧扣大纲,精心编制复习教案

初中数学内容多而杂,其基础知识和基本技能又分散覆盖在三年的教科书中,学生往往学了新的,忘了旧的。因此,必须依据大纲规定的内容和系统化的知识要点,精心编制复习计划。计划的编写必须切合学生实际。可采用基础知识习题化的方法,根据平时教学中掌握的学生应用知识的实际,编制一份渗透主要知识点的测试题,让学生在规定时间内独立完成。然后按测试中出现的学生难以理解、遗忘率较高且易混易错的内容,确定计划的重点。复习计划制定后,要做好复习课例题的选择、练习题配套作业筛眩教师制定的复习计划要交给学生,并要求学生再按自己的学习实际制定具体复习规划,确定自己的奋进目标。

我们在组织全组老师编写资料的时候,围绕着以下三点构想:

1.全面性虽然我们不敢说“一册在手,别无所求”,但我们坚信对你是有多多少少帮助的。由于我们围绕着:①对考试的热点作认真分析;②对知识点做细致整理;③对20__中考的动态分析等编制理念,同时,我们在编制安排上本着:着眼于操作;立足于中考;服务于学生等想法,按照分课时将教案和学案在一本中设计的原则,使我们老师在使用的时候能有很全面的借鉴价值。

2.可操作性我们在整个复习中,设置三个阶段①基础知识积累阶段:题目的难度大概是中考题目中的70%的基础题目;②专项知识整理阶段:题目的难度大概是中考题目中的20%---30%的应用题目;③实战演练阶段(借助一份中考试卷的解答指导试卷的解读技巧)

3.互动性在编制这本复习书的时候,为了充分体现在教师主导下的学生主体地位,真正让学生成为学习的主人,我们在设计的时候,开辟四个特色栏目:“自我诊断”“警钟长鸣”“师生对话”“机动园地”,以便我们老师在使用的时候能找到非智力因素等课程资源。

4.资料新 我们这本复习用书中的所有例习题,均来源于 ①从20__年各地中考题中采用优中选优的原则选择50% ,②从其他有关资料中精选20%,③我们学校老师原创自编习题约占30% .

二、追本求源,系统掌握基础知识

总复习开始的第一阶段(2月21号——3月27号),首先必须强调学生系统掌握课本上的基础知识和基本技能,过好课本关。对学生提出明确的要求:①对基本概念、法则、公式、定理不仅要正确叙述,而且要灵活应

关于初三数学复习计划(七篇)

人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。什...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?