精选广角论坛部长申请书范本(三篇)
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
精选广角论坛部长申请书范本一
客人到了,先为客人沏杯茶,这是常见的招待客人之礼,也是小学生比较熟悉的。灵活地调整教学内容的顺序,精心设计了先为客人沏茶,再请客人吃烙饼的活动场景,浓郁的生活气息,把学生请进招待客人的具体情境中。当画面呈现出妈妈让小明给李阿姨烧壶水沏杯茶的信息后,不马上提出怎样才能让客人尽快喝上茶的问题,而是让学生想一想,平时沏茶需要做哪些事,可以激活学生已有的生活经验,使学生处于主动思考和解决问题的最佳状态,有效地促使学生积极地参与学习活动。
老师要相信学生,把学生推上学习活动的主体地位。课堂上,我以一个个的具体事例,组织一系列的观察、思考、操作和交流活动,使学生在解决具体问题中体会数学方法的应用,体会优化思想。
例如:借助学生交流的成果,直观再现烙三张饼最佳方法的过程,让全体学生清楚的看到,锅里每次都烙两张饼,印证了学生的发现,有效地提升了学生对烙三张饼最佳方法的理解。再如:在学生一次解决四张饼、五张饼、六张饼的最短用时后,请学生讨论解决烙七张、八张、九张、十张饼分别最快需要几分钟的问题。这些活动,让所有的学生了解了小伙伴的发现,学生在活动中经历了发现过程,领悟了数学思想方法,体验数学活动充满着探索与创新,这些活动,还带给学生严谨求实的科学精神的启迪。
上述教学活动既使学生探索数学知识,和运用数学知识解决问题的过程,也是学生对科学精神、积极向上学习态度的体验过程,有利于促进学生的全面发展。当然在上课的过程中还有一些细节需要注意,希望在以后的教学中能尽量改善。
精选广角论坛部长申请书范本二
一、教材分析:
本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。
在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。
“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。
二、三维目标:
1、知识与技能:
引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。
2、过程与方法:
(1)经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等
活动的学习方法,渗透数形结合的思想。
(2)学会与人合作,并能与人交流思维过程和结果。
3、情感态度与价值观:
(1)积极参与探索活动,体验数学活动充满着探索与创造。
(2)体会数学与生活的紧密联系,感受数学在实际生活中的作用,体
验学数学、用数学的乐趣。
(3)通过“鸽巢原理”的灵活应用,感受数学的魅力。
(4)理解知识的产生过程,受到历史唯物注意的教育。
三、教学重点:
应用“鸽巢原理”解决实际问题,引导学会把具体问题转化成“鸽巢问题。
四、教学难点:
理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。
五、教学措施:
1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。
3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。
六、课时安排:3课时
鸽巢问题-------------------1课时
“鸽巢问题”的具体应用------1课时
练习课---------------------1课时
精选广角论坛部长申请书范本三
教学目标:
1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。
2、过程
精选广角论坛部长申请书范本(三篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。