电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

数学复数心得体会范本 数学复数的知识点总结(五篇)

来源:互联网作者:editor2024-02-012

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。那么你知道心得体会如何写吗?以下是我帮大家整理的最新心得体会范文大全,希望能够帮助到大家,我们一起来看一看吧。

最新数学复数心得体会范本一

您好!

四年来,在师友的严格教益和个人的努力下,系统地学习和掌握了数学分析、高等代数、近世代数、实变函数与泛函分析、常微分方程、复变函数、高等几何、代数选讲、分析选讲、中学几何研究、中学代数研究、大学英语、。我也顺利通过了全国英语四级、普通话等级考试。

在求学过程中,我更注重对自身能力的培养和品行的塑造。在校期间,我曾在助学到报社担任相关职务,组织参加校园歌手大赛,锻炼了自己组织管理协调能力和团队协作意识,社团工作让我深深受益;也参加了甘肃省首届大学生创业大赛,在组织策划方面得到了锻炼,在种种挫折中成长。为我积累了宝贵的经验,通过不断的努力,我已变得成熟,有很强的责任心。

学生活很快便过去了,我自信以自己坚实的专业知识、丰富的心理学知识、较高的组织管理能力和教学能力,一定能胜任且很好地完成您交给我的工作,请贵校给我一个机会。

此致

敬礼!

最新数学复数心得体会范本二

以学校工作计划为指导思想,结合我所教班级的实际,有计划,有目标,有步骤 进行复习,复习时依据考纲和课本,实施素质教育,设法引导学生,因材施教,调整好生的学习状态,努力提高学生的合格率、平均分,力争在今年初三升学考取得好成绩。

一、 第一轮复习的形式

1、重视课本,系统复习。初中数学基础包括基础知识和基本技能两方面。现在中考命题仍然以基础知识题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题式习题,是教材中题目的引伸、变形或组合,复习时应以课本为主,在复习时必须深钻教材,把书中的内容进行归纳整理,使之形成自己的知识结构。

2、夯实基础,学会思考。在应用基础知识时应做到熟练、正确、迅速。上课不能只听老师讲,要敢于质疑,积极思考方法和策略,应通过老师的教,自己“悟”出来,自己“学”出来,尤其在解决新情景问题的过程中,应感悟出如何正确思考。

3、重视基础知识的理解和方法的学习。基础知识既是初中所涉及的概念、公式、公理、定理等。掌握基础知识之间的联系,要做到理清知识结构,形成整体知识,并能综合运用,例如:中考涉及的动点问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中的相似三角形、比例推导等等。

二、第一轮复习应该注意的几个问题

1、扎扎实实地夯实基础。每年中考试题按难度比例,基础分占比例大,因此使每个学生对初中数学知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

2、中考有些基础题是课本上的原题或改造,必须深钻教材,绝不脱离课本。

3、不搞题海战术,精讲精练。

4、定期检查学生完成的作业,及时反馈。教师对于作业、练习、测验中的问题,应采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等办法进行反馈、矫正和强化。

5、注重思想教育,不断激发他们学好数学的自信心,并创造条件,让学生体验成功的快乐。

三、第二轮复习 1、第二轮复习的形式

第一阶段是总复习的基础,是重点,侧重双基训练,第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。第二轮复习的时间相对集中,在一轮复习的基础上,进行拔高,适当增加难度;抓重点内容,适当练习热点题型。多年来,初中数学的“方程”、“函数”、“直线型”一直是中考重点内容。“方程思想”、“函数思想”贯穿于试卷始终。这些中考题大部分来源于课本,有的对知识性要求不同,但题型新颖,背景复杂,文字冗长,不易梳理,所以应重视这方面的学习和训练,以便熟悉、适应这类题型。

2、第二轮复习应该注意的几个问题

(1)第二轮复习不再以节、章、单元为单位,而是以专题为单位。

(2)专题的划分要合理。

(3)专题的选择要准、安排时间要合理。专题要有代表性,切忌面面俱到;专题要有针对性,围绕热点、难点、重点特别是中考必考内容选定专题;根据专题的特点安排时间,重要处要狠下功夫,不惜“浪费”时间,舍得投入精力。

(4)注重解题后的反思。

四、第三轮复习

1、第三轮复习的形式

第三轮复习的形式是模拟中考的综合拉练,查漏补缺,这好比是一个建筑工程的验收阶段,考前练兵。研究历年的中考题,训练答题技巧、考场心态、临场发挥的能力等。

2、第三轮复习应该注意的几个问题

(1)模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,总体难度的控制等要切近中考题。

(2)模拟题的设计要有梯度,立足中考,又要高于中考。

(3)批阅要及时,趁热打铁。

(4)给特殊的题加批语。某几个题只有个别学生出错,这样的题不能再占用课堂上的时间,个别学生的问题,就在试卷上以批语的形式给予讲解。

(5)选准要讲的题,要少、要精、要有很强的针对性。

最新数学复数心得体会范本三

《最小公倍数》这节课,如何让学生的学习的积极性较高,知识的掌握也较为自然而扎实,学生的思维也在呈螺旋式上升趋势,取得了良好的教学效果。我是从以下几个方面来做:

一、创设情境 激发兴趣,使学生主动的参与到学习中去。

“公倍数”、“最小公倍数”单从纯数学的角度去让学生领会,显然是比较枯燥、乏味的。我从学生的经验和已有的知识出发,激发学生的学习兴趣,向学生提供充分从事数学活动的机会,增强学生学好数学的信心。使这些枯燥的知识变成鲜活、灵动数学,让学生在解决问题的过程中既学到了知识,又体念到了学数学的快乐。

二、培养学生自主探究的能力。

教学中,我们不要教给学生现成的数学,而是要让学生自己观察、思考、探索研究数学。在研究最小公倍数的意义时,设计了例举法找最小公倍数、最小公倍数猜想、分解质因数比较,一系列开放的数学问题,让学生有足够的思维活动空间来解决问题,自主地进行探究性活动,使学生体念到数学数学就在我们的身边。

三、挖掘不足 有待改进

1、课初的情境创设虽考虑到与例题之间的联系,但过渡得不够好。

2、如何激发学生的兴趣不止是一时之效,如何从学生的角度出发进行预案的设计,课堂中顺学而导保持学生的学习积极性是一个值得思考的问题。

最新数学复数心得体会范本四

北京化工大学应届毕业,报考本校。

数学:150分,

专业课:142分,总分:417分

何苦不现在就把握机遇,挑战新的高峰,给自己的人生定制一个清晰的方向。

在安适的山寨容易埋葬憧憬,在舒适的田野容易迷失方向。失去竞争实力时才去感叹时光如逝,何苦不现在就把握机遇,挑战新的高峰,给自己的人生定制一个清晰的方向。我希冀,我付出,所以我收获。你是否也像我一样为考研奋斗而最终收获呢?你的心中是否有明确的计划去实现你的理想呢?在此我希望与大家分享自己的心得与体会,使大家少走弯路,顺利攀登考研高峰。

制订好整体复习计划,合理安排复习时间,是相当重要的。对数学复习而言,我将其大体分成三个阶段。

一、以书为本,总体把握

因为课本对基本概念的定义,基本原理的推导都是十分准确、精练的,掌握了这些基础知识体系,后续阶段的复习会取得事半功倍的效果。有些同学一开始就盲目地追求做题数量,忽视了课本的复习,那是极不可取的。必须通过对课本的复习,理出一个知识框架体系,从总体上把握考点。另外,必须定期总结和巩固前一阶段所学习的知识,温故而知新。

二、认真做题,广积思路

众所周知,数学还是以练为主的。除了第一阶段必须完成课本上的习题外,主要的精力应集中在陈老师和黄老师本书所提到的黄老师均为黄先开教授。主编的《复习指南》上。刚做这本书上的习题时,我真有点力不从心,有时觉得解题方法很奇特,而答案也有些突兀。经过陈老师和黄老师上课时仔细地讲解,我对这些难点有了更深刻的理解。老师们稳重的授课风格,有条不紊的解题思路,以及循序渐进、举一反三的教学方法使大家能够更有效地吸收知识。我想强调融会贯通的重要性,千万别为了做题而做题,因为做题只是一种手段而已。应通过做题将所学知识点联系起来,并将所学的思路与方法为己所用。

三、研究真题,查漏补缺

从一些研究生介绍和自我感觉来说,真题的作用绝对是其他模拟题所不可替代的。只要你仔细研究就会发现历史是如此惊人地相似,很多考题都是貌离神合。应该用一到两个月的时间来做和研究近十年真题,包括数(一)到数(四)中你要考的内容。这不仅可作为检测自己最直接的手段,而且更重要的是能让考生熟悉考试的内容和侧重点,了解命题人的命题思路。在分析真题时,可找出自己的不足,再回到课本和辅导书进行复习巩固,理解的程度自然就加深了。至于模拟题应有选择地做几套,目的只是练练手,切勿一味贪多。

当然,检验复习效果要靠考试,所以在抓做题的同时也要注意应试技巧的训练。主要做到快、准、全。快要求你通过分析能迅速找到解题思路:准则要求解题过程中运算要准确无误;而全则是必须按标准答案的步骤答题。以上三点需要你在平时训练中慢慢积累,如在做真题时严格按考试时间和要求检测自己,通过八套左右的练习,到考试时自然是水到渠成了。最后衷心祝愿师弟师妹们在来年的考研中取得理想的成绩。

最新数学复数心得体会范本五

第一周(5月26日——30日)学习内容:

分数的意义,分数与除法的关系,分数大小的比较

周一,三,五收看空中课堂五年级数学(共3节)

第二周(6月2日——6日)学习内容:

真分数和假分数,假分数与带分数或整数的互化,分数的基本性质

周二,四收看空中课堂五年级数学(共2节)

第三周(6月9日——13日)学习内容:

约分,通分,分数和小数的互化

周一,三,五收看空中课堂五年级数学(共3节)分数与小数的互化,复习,第五单元同分母分数加减法

第四周(6月16日——20日)学习内容:

分数与小数的互化,复习

周二,四收看空中课堂五年级数学(共2节)

第五周(6月23日——27日)学习内容:

异分母分数加减法,分数加减混合运算,复习

周一,三,五收看空中课堂五年级数学(共3节)

第六周(6月30日——7月4日)学习内容:第七周(7月7日——7月11日)学习内容:

总复习第四,五单元,课本p127—p130

根据实际情况定时收看空中课堂,培养自己独立学习的习惯,形成适合自己的学习方法。

学习时不仅要关注结果,更要关注学习过程,注意思路和方法的学习。

遇到疑问要用心钻研,或打电话向老师和同学请教。

中央教育电视台cetv—3在每周一到周五上午9:10—9:40空中课堂有高年级数学课,同学们要安排时间及时收看。(具体安排以电视台预报为准)

第四单元分数的意义和性质是系统学习分数的重要单元,是学习分数四则运算和应用题的基础,务必认真学好。

1、理解分数的意义;分子,分母和分数单位的含义;分数与除法的关系;会比较分数的大小;认识真分数,假分数和带分数;掌握整数,带分数与假分数互化的方法。

2、理解和掌握分数的基本性质;能比较熟练的进行约分和通分。

3、理解分数和小数的关系,比较熟练的进行分小互化。

4、初步树立实践第一,矛盾转化的观点,培养良好的学习习惯。

首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。

复习高数书上册第一章,需要达到以下目标:

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

2.了解函数的有界性、单调性、周期性和奇偶性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形,了解初等函数的概念。

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

6.掌握极限的性质及四则运算法则。

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

复习高数书上册第二章1-3节,需达到以下目标:

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

3.了解高阶导数的概念,会求简单函数的高阶导数。

本阶段主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:

1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

2.理解并会用罗尔(rolle)定理、拉格朗日(lagrange)中值定理和柯西(cauchy)中值定理。

3.掌握用洛必达法则求未定式极限的方法。

4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

本阶段主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

复习高数书上册第四章 第1-3节。需达到以下目标:

1.理解原函数的概念,理解不定积分的概念。

2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。

本阶段主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意 c],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

复习高数书上册第五章第1-3节。达到以下目标:

1.理解定积分的几何意义。

2.掌握定积分的性质及定积分中值定理。

3.掌握定积分换元积分法与定积分广义换元法。

本阶段的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

复习高数书上册第五章第4节,第六章第2节。达到以下目标:

1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。

2.掌握定积分换元法与定积分广义换元法。会求分段函数的定积分。

3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

本阶段主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。

数学复数心得体会范本 数学复数的知识点总结(五篇)

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
0.0384s