智能服装工厂简介范文通用 服装智能制造工厂(六篇)
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
2023年智能服装工厂简介范文通用一
纵观当今社会,智能制造技术无疑是世界制造业未来发展的重要方向之一。所谓智能制造技术,是指在现代传感技术、网络技术、自动化技术、拟人化智能技术等先进技术的基础上,通过智能化的感知、人机交互、决策和执行技术,实现设计过程、制造过程和制造装备智能化,是信息技术和智能技术与装备制造过程技术的深度融合与集成。接下来,我们谈谈我国的智能制造技术发展现状以及存在的一些问题。
一.我国智能制造技术的发展现状
我国对的研究开始于20世纪80年代末。在最初的研究中在智能制造技术方面取得了一些成果,而进入21世纪以来的十年当中智能制造在我国迅速发展,在许多重点项目方面取得成果,智能制造相关产业也初具规模。我国已取得了一批相关的基础研究成果和长期制约我国产业发展的智能制造技术,如机器人技术、感知技术、工业通信网络技术、控制技术、可靠性技术、机械制造工艺技术、数控技术与数字化制造复杂制造系统、智能信息处理技术等;攻克了一批长期严重依赖并影响我国产业安全的核心高端装备,如盾构机、自动化控制系统、高端加工中心等。建设了一批相关的国家重点实验室、国家工程技术研究中心、国家级企业技术中心等研发基地,培养了一大批长期从事相关技术研究开发工作的高技术人才。
随着信息技术与先进制造技术的高速发展,我国智能制造装备的发展深度和广度日益提升,以新型传感器、智能控制系统、工业机器人、自动化成套生产线为代表的智能制造装备产业体系已经初步形成,一批具有自主知识产权的智能制造装备也实现了突破。
二.我国智能制造技术存在的问题
近年来,我国智能制造技术及其产业化发展迅速,并取得了较为显著的成效。然而,制约我国智能制造快速发展的突出矛盾和问题依然存在,主要表现在以下四个方面。
1.智能制造基础理论和技术体系建设滞后
智能制造的发展侧重技术追踪和技术引进,而基础研究能力相对不足,对引进技术的消化吸收力度不够,原始创新匮乏。控制系统、系统软件等关键技术环节薄弱,技术体系不够完整。先进技术重点前沿领域发展滞后,在先进材料、堆积制造等方面差距还在不断扩大。
2.智能制造中长期发展战略缺失
金融危机以来,工业化发达国家纷纷将包括智能制造在内的先进制造业发展上升为国家战略。尽管我国也一直重视智能制造的发展,及时发布了《智能制造装备产业“十二五”发展规划》和《智能制造科技发展“十二五”专项规划》,但智能制造的总体发展战略依然尚待明确,技术路线图还不清晰,国家层面对智能制造发展的协调和管理尚待完善。
3.高端制造装备对外依存度较高
目前我国智能装备难以满足制造业发展的需求,我国90%的工业机器人、80%的集成电路芯片制造装备、40%的大型石化装备、70%的汽车制造关键设备、核电等重大工程的自动化成套控制系统及先进集约化农业装备严重依赖进口。船舶电子产品本土化率还不到10%。关键技术自给率低,主要体现在缺乏先进的传感器等基础部件,精密测量技术、智能控制技术、智能化嵌入式软件等先进技术对外依赖度高。
4.关键智能制造技术及核心基础部件主要依赖进口
构成智能制造装备或实现制造过程智能化的重要基础技术和关键零部件主要依赖进口,如新型传感器等感知和在线分析技术、典型控制系统与工业网络技术、高性能液压件与气动原件、高速精密轴承、大功率变频技术、特种执行机构等。许多重要装备和制造过程尚未掌握系统设计与核心制造技术,如精密工作母机设计制造基础技术、百万吨乙烯等大型石化的设计技术和工艺包等均未现国产化。几乎所有高端装备的核心控制技术严重依赖进口。
综上所述,我国的智能制造技术还存在着一些问题,需要我们去挖掘更有效的方法来解决,我们更应该着重于思路的创新性,与国际化接轨。目前,世界各国都对智能制造系统进行了各种研究,未来智能制造技术也会不断地发展。目前,以3d打印为代表的“数字化”制造技术已经崭露头角,未来智能制造技术创新及应用也会贯穿制造业全过程,世界范围内智能制造国家战略将会空前高涨,这对我国来说,无疑是一项挑战也是巨大的动力。
2023年智能服装工厂简介范文通用二
【摘 要】 人工智能(ai)是研究使计算机来模拟人的某些思维过程和智能行为的学科,是二十一世纪三大尖端技术之一。ai未来的发展必将越来越广泛,越来越深入,越来越快地向着人类智能的方向逼近。伴随着人工智能和智能机器人的发展,为人类文化生活提供了新的模式。
人工智能(artificial intelligence),英文缩写为ai,是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机。二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。
(1)人工智能的思想萌芽可以追溯到十七世纪的巴斯卡和莱布尼茨,他们较早萌生了有智能的机器的想法。十九世纪,英国数学家布尔和德摩尔根提出了“思维定律”,这些可谓是人工智能的开端。十九世纪二十年代,英国科学家巴贝奇设计了第一架“计算机器”,它被认为是计算机硬件,也是人工智能硬件的前身。1936年,24岁的英国数学家图灵提出了“自动机”理论,把研究会思维的机器和计算机的工作大大向前推进了一步,在定义智慧时,图灵做出了解释,如果一台机器能够通过称之为图灵实验的测试,那它就是智慧的,图灵实验的本质就是让人在不看外型的情况下不能区别是机器的行为还是人的行为。(2)上世纪三四十年代,维纳、弗雷治、罗素的数理逻辑,和丘奇、图灵的数字功用以及计算机处理发展促使了1956年夏dartmouth会议上人工智能学科(由“人工智能之父”麦卡锡提出,麦卡锡曾是stanford人工智能实验室主任)的诞生20世纪60年代以来,采用生物模仿来建立功能强大的算法,包括进化计算等,人工生命以进化计算为基础,研究自组织、自复制、自修复以及形成这些特征的进化和环境适应。70年代以来,conrad等研究人工仿生系统中的自适应、进化和群体动力学,提出不断完善的“人工世界”模型。80年代,人工神经网络再度兴起促进人工生命的发展。(3)1992年贝兹德克提出计算智能。专家系统在90年代兴起,模拟人类专家解决领域问题。
强人工智能的观点认为有可能制造出真正能推理和解决问题的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。弱人工智能的观点认为不可能制造出能真正地推理和解决问题的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。现在主流科研集中在弱人工智能上,强人工智能的研究则处于停滞不前的状态下。
目前人工智能主要研究内容是:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面,分布式人工智能与多智能主体系统、人工思维模型、知识系统、知识发现与数据挖掘、遗传与演化计算、人工生命应用等等。未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。
ibm公司“deep blue”电脑击败了人类的世界国际象棋冠军,美国sandia实验室建立了国际上最庞大的“虚拟现实”实验室,拟通过数据头盔和数据手套实现更友好的人机交互。国际各大计算机公司相继开始将人工智能作为其研究内容,几乎包括所有it企业,以及很多金融巨头,纷纷建立自己的人工智能产业部,利用“智能”来解决问题。无人驾驶车的诞生,打破了汽车靠人驾驶的时代。
mit开发出了shrdlu,student系统可以解决代数问题,而sir系统则开始理解简单的英文句子了,sir的出现导致了新学科的出现:自然语言处理。在70年代出现的专家系统成了一个巨大的进步,它头一次让人知道计算机可以代替人类专家进行工作。在理论方面,计算机开始有了简单的思维和视觉,而不能不提的是人工智能语言prolog语言诞生了,它和lisp一起几乎成了人工智能工作者不可缺少的工具。
(1)人工智能对自然科学的影响。在需要使用数学计算机工具解决问题的学科,ai带来的帮助不言而喻。更重要的是,ai反过来有助于人类最终认识自身智能的形成。(2)人工智能对经济的影响。专家系统更深入各行各业,带来巨大的宏观效益。ai也促进了计算机工业网络工业的发展。但同时,也带来了劳务就业问题。由于ai在科技和工程中的应用,能够代替人类进行各种技术工作和脑力劳动,会造成社会结构的剧烈变化。(3)人工智能对社会的影响。ai也为人类文化生活提供了新的模式。现有的游戏将逐步发展为更高智能的交互式文化娱乐手段,今天,游戏中的人工智能应用已经深入到各大游戏制造商的开发中。
伴随着人工智能和智能机器人的发展,不得不讨论是人工智能本身就是超前研究,需要用未来的眼光开展现代的科研,因此很可能触及伦理底线。作为科学研究可能涉及到的敏感问题,需要针对可能产生的冲突及早预防,而不是等到问题矛盾到了不可解决的时候才去想办法化解。
智能机器人具有类似于人的智能,它装备了高灵敏度的传感器,因而具有超过一般人的视觉、听觉、嗅觉、触觉的能力,能对感知的信息进行分析,控制自己的行为,处理环境发生的变化,完成交给的各种复杂、困难的任务。而且有自我学习、归纳、总结、提高已掌握知识的能力。目前研制的智能机器人大都只具有部分的智能,和真正的意义上的智能机器人,还差得很远。
当然,虽然人工智能一直都处于计算机技术的最前沿,但人工智能的发展也并不是一帆风顺的,并不象我们期待的那样迅速,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷。人工智能的问题的在于,一方面哲学、认知科学、思维科学和心理学等学科所研究的智能层次高而抽象;另一方面ai逻辑符号、神经网络和行为主义所研究的智能层次太基本。由于对中间机制知之甚少,这种背景下提出的各种ai理论,就只能是或者完全不同于人类思维,与人类的思维模式相距太远,同时在人类思维方式的理解上也有待突破,不然很难形成更新的ai框架和理论体系。尽管如此,多学科的联合协作研究也带来了足够引人注目的增长。因为人工智能的基本理论还不完整,我们还不能从本质上解释我们的大脑为什么能够思考,这种思考来自于什么,这种思考为什么得以产生等一系列问题。但经过这几十年的发展,我们相信它会给世界带来难以预料的变化。
[1][美]l[美]peternorvig人工智能:一种现代的方法(第3版)。
[2]人工智能及其应用蔡自兴徐光佑。
[3]游戏人工智能编程案例
智能服装工厂简介范文通用 服装智能制造工厂(六篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。