儿童数学教育课程心得体会如何写 幼儿数学培训心得体会范文(5篇)
我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。大家想知道怎么样才能写得一篇好的心得体会吗?以下是小编帮大家整理的心得体会范文,欢迎大家借鉴与参考,希望对大家有所帮助。
最新儿童数学教育课程心得体会如何写一
本次青年教师课堂展示课活动在学校教务处的精心组织和各位教师的精心准备下,开展的很成功,根据教务处的统一安排,我就各位数学教师的课谈几点我个人粗浅的看法,如有不妥之处,请几位教师不要介意,同时请各位领导和教师指正。
数学课总体呈现五大亮点:
一、课堂活动紧密联系生活实际,体现了让学生学习有用的知识这一先进的课程理念。数学来源于生活,应用于生活,课程标准中明确地告诉我们:教学活动必须建立在学生原有的生龙活虎的经验和学生原先的认知基础上。各位数学教师都能恰当的运用身边的教学素材,创造趣味的教学情景。
二、注重学生自主探索,三维目标得到充分体现。新课程标准对数学课的教学目标有明确要求:就是使学生在获得必须的基本数学知识和基本技能的同时,在情感、态度、价值观和本事方面都得到发展。各位数学教师的课堂中,教师都能够充分扮演好组织者、引导者和合作者的主角,所以对于一个问题的解决,我们教师不是传授此刻的方法,而是教给学生解决问题的策略,给学生一把在知识的海洋中航行的桨,让学生进取思考,大胆尝试,在主动探索中获取成功并体验成功的喜悦。
三、合作交流与动手实践相结合,充分获取数学活动经验。江美春、陈志蕾的课中,她们都在不一样程度上让学生在动手操作中进行独立思考,鼓励学生发表自我的意见,与同伴交流,并充分给足了学生动手、观察、交流、合作的时间和空间,让学生在具体的操作活动中获得知识,体验知识的构成过程,获得学习的主动权。
四、学习方法和教学手段多样化,降低了学习难度,提高了学习效率。她们都能充分利用多媒体进行辅助教学,同时将观察、操作、讨论、练习、转化、比较等有效的学习方法与之相结合,大大提高了学习效率。
五、数学思想方法得到了充分渗透,学生的学习本事和学习品质得到进一步优化。
这三位数学教师各有所长,每节课从不一样的角度,不一样的层面充分展示了各自的教学水平和教学艺术。她们语言优美,仪表大方,课堂中能充分利用儿童的心理特点,创设学生喜爱的教学情景,为学生对新知的探究和整节课教学任务的完成起到了举足轻重的作用。教学环节紧凑,合理把握重点,突破教学难点,经过有效的合作交流和自主探索,把一节枯燥的课上的很精彩。
当然,我们每位教师的课都不可能到达100%的完美,所以我认为在以下几方面还值得进一步加强改善和研讨:
一、课前与学生交流互动比较少。在课前多交流,会促使孩子们以最佳的心境无拘无束的投入到下头的学习活动之中,也有利于教师克服自我的紧张情绪。
二、教师的评价激励性语言较少,应当加强。
三、合作学习的过程还需进一步优化,异常是对合作学习进程中的分工情景、参与率、合作方法等因素还要重点研究。学生的合作学习,教师不是一个旁观者,而要参与其中。
四、课堂中各环节过渡不够自然,异常是在使用多媒体过程中,没有能够很好地进行每个环节之间的过渡和衔接。
五、课堂细节关注不够全面,比如在课件制作、板书、教态及专业术语、过渡语的使用上还有待进一步提高。
总之,各位教师经过精心准备,分别为我们奉献了精彩的一节课,从这些课中我们既看到了青年教师过硬的课堂教学本事和扎实的教学基本功,同时又为我们今后的教学思路指明了方向。期望全体数学教师以本次活动为契机,在今后的教学工作中进一步加大课堂效率的有效性,逐步探索课堂教学的新路子,为了让我们的课堂到达民主和谐、简便高效而共同努力。
一句话:教学是我们的事,教会了是高兴的事,会教了是幸福的事!
最新儿童数学教育课程心得体会如何写二
两年多来,我国义务教育数学课程改革呈现了可喜的变化。学生的知识面广了,学得活了,学习兴趣浓了,课堂开放了,教师与学生的亲和力增加了。在看到这些变化的同时,又要冷静下来对目前实施过程中的一些困惑问题进行反思。“摸着石头过河”,究竟摸到哪些石头?摸得怎样?有哪些问题有待进一步研究解决?下面对几个问题谈谈自己的看法。
一、多样化与优化
现代教育的基本理念是“以学生的发展为本”,既要面向全体,又要尊重差异。作为教师,要促进学生的全面发展,就要尊重个性化,不搞填平补充一刀切。要创造促进每个学生得到长足发展的数学教育。
算法多样化是针对过去计算教学中往往只有一种算法的弊端提出来的。例如某一种题目,只要求笔算,另一种题目只要求口算,即使口算也往往只有一种思路(当然,学生如有其他思路也不限制),这样很容易忽略个别差异,遏止了学生的创造性,何况有不少题目本来就可以有多种算法的。可以说,鼓励算法多样化是在计算教学中促进每个学生在各自基础上得到发展的一个有效途径。
应该明确“算法多样化”与“一题多解”是有区别的。“一题多解”是面向个体,尤其是中等以上水平的学生,遇到同一道题可有多种思路多种解法,目的是为了发展学生思维的灵活性。而“多样化”是面向群体的,每人可以用自己最喜欢或最能理解的一种算法,同时在群体多样化时,通过交流、评价可以吸取或改变自己原有的算法。因此,在教学中不应该也不能要求学生对同一题说出几种算法,否则只是增加学生不必要的负担。
曾经看到一些低年级的计算课上,讨论一道计算题,出现了10种、20多种的算法,教师还一个劲儿地给予鼓励,临下课时,只简单地说了一句:“你们可以用自己喜欢的方法来算。”其结果是班上思维迟缓的一些学困生确是眼花缭乱、无所适从,产生了干扰。这种情况是不是我们鼓励的个性化呢?我认为不然。数学是讲“优化”的,算法“优化”的含意是要求寻找最简捷、最容易、速度快的方法。诚然,在多种算法中,有的并不见得有优劣之分,如20以内退位减法,无论是用“破十”“连减”或“用加算减”的方法,都很难说孰优孰劣,儿童完全可随自己的经验进行选择;又如长方形周长的求法,有的愿意用“(长 宽)__2”的方法,有的则用“长__2 宽__2”的方法,学生喜欢用哪个就用哪个。
但是,一般情况下,总有个最基本、最一般或最佳的算法。教学中,教师有责任引导学生去比较、去评价,并使大家掌握那些公认的更好、更一般的算法,以便举一反三、闻一知百,否则就失去了教育的功能。请看一位教师教两位数乘两位数的新课实录。由实例引出24__12=?第一步,先由学生各自探索算法,分组交流(有10种左右),经过归纳不外乎以下三类:连加,连乘24__3__4,24__2__6,……),乘法分配律的应用(24__10 24__2,……)。第二步,由学生评价,一致认为三类算法都合理,但第一类太麻烦,其他两类各有优势。第三步,教师将题目改为24__13,请学生用自己喜欢的算法计算,结果都选择为24__10 24__3,此乃笔算乘法的算理。此时,教师便因势利导引入了乘法竖式,并使学生体会到它的优越性──能将乘法算理以固定而简明的程式显示,操作性强,简捷而不易出错,并具有一般性。我认为这种教学是正确的,又促进了儿童的发展,才是真正凸现了“算法多样化”的实质。算法多样化绝非是越“多”越好,切忌一些无价值的重复。总之,一切要从儿童的实际出发。
二、生活化与数学化
数学源于生活,寓于生活,用于生活。新课程改革重视数学教学生活化,引导学生在活动中学习数学,使孩子们感到数学有趣、有用,取得了明显的效果,也是数学课改的最大亮点。
数学,对儿童来说,是他们自己生活经验中对数学现象的一种“解读”。把数学教学密切联系他们的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,学起来必然亲切、实在、有趣、易懂。教学中,有的通过调查商品标价引入小数乘法,调查父母月工资的收入计算多位数加减,测量足球场的面积并以其为参照物,体验1公顷的实际大小;有的结合新课内容介绍数学知识在实际中的应用;有的复习课也已不只停留在“查缺补漏,知识系统化”上,开始着力于培养学生综合运用知识解决实际问题的能力。记得我曾见到的一节六年级“代数初步知识”复习课,教师把自身赴山东讲课事例作为背景,边说边画:
向学生设问:①你们能用字母表示的式子写出老师淄博一行的全部开支吗?
②想一想,式子中哪些量是不变的?哪些量是可变的?
③算一算,老师这次淄博一行至少要带多少钱较为合适?(小组合作讨论)
整个教学培养了学生利用已学知识综合解决实际问题的能力,并使大家体尝到数学应用的价值。
但是,在课改实践中,我也听到不少教师有这样的疑惑:“数学问题是不是都必须从儿童的生活实际提出?”“教三角形内角和怎样从生活实际引入?”“循环小数又怎样联系学生的生活实际?”……正由于此,有的课已上了15分钟,还停留在大量的情境渲染之中,丝毫没有涉及数学本身的内容,犹如皮厚的“沙田柚”剥不开也吃不着,教学效果可想而知。
应该看到,儿童的数学学习是一种不断提出问题、探索问题和解决问题的思维过程。问题是数学的心脏,数学问题来自两个方面,有来自数学外部的(即现实的生活实际),也有来自数学内部的。无论来自外部或内部,只要能造成学生的认知矛盾,都能引起学生的内在学习动机,就会出现发展,都是有价值的。前面提到的“三角形内角和”,如果采用由旧引新的方法(设问:正方形有几个内角?四个内角和是多少度?长方形呢?三角形三个内角的大小是不固定的,有没有规律呢?)三言两语,就能有效地激起学生的求知欲。因此,看问题必须全面,不能绝对化。教学是科学,一切要从实际出发。
当前,数学教学注重应用,既讲来源,又谈用处,大大地克服了过去“掐头去尾烧中段”脱离实际的倾向,成效是明显的。但必须认清,我们反对的是只“烧中段”,而不是不要“烧中段”,我们反对的是过度的形式化,而不是不要形式化,数学的形式化是数学固有的特点。我们既要注重应用、返璞归真的一面,又要注重抽象概括、形式推理的一面,引导学生抽象出数学问题,提炼出数学模型,利用其已有的知识经验,通过数学思考解决问题。所以,重要的数学概念、规律应加以概括,常见的数量关系(如速度、时间、路程等)在学生理解的基础上仍要揭示,在重视直觉思维的同时,还要注重培养形象思维和初步的逻辑思维,以提高学生的数学素养。
课堂内的数学活动是丰富多彩的。什么是数学活动呢?我认为,具有数学意义的活动才能称得上数学活动。目前,有的数学活动,有情境没有活动,有活动没有数学味,有活动缺乏体验。下面介绍一位教师在教学“11~20以内数的认识”时组织的颇有意义的数学活动。当学生已学会数数(顺着数、倒着数、2个2个地数……)后,组织了一个别开生面的游戏。教师拿出一个黑白相间的足球:“数一数,有几块是白的?有几块是黑的?看谁数得又对又快!”话音刚落,不少学生争先恐后地要求上来。前来的多个学生,每人数的结果都不一样,不是重就是漏,怎么办?正当全班困惑之际,一位小同学自告奋勇地上来,拿起红粉笔在白的上面逐一点数,又拿出白粉笔在黑的上面依次点数,不重也不漏,数得完全正确。这样的游戏活动,不仅激发了学生的兴趣,而且渗透了一一对应的数学思想方法,这才是有价值的有意义的数学活动。
三、探索与发现
学习方式一般说来,可分为接受学习与发现学习两种。
发现学习是由教师提出问题,学生自己独立探索和发现其结论。这种学习方式(亦称发现法)是20世纪50年代末美国著名认知心理学家j.s布鲁纳提倡的,并流传欧美,这种方式在不同的国家有不同的名称,如问题研究法、探索法等,实质均基本相同。布鲁纳认为,在人类全部生活中,人的最大特点是会发现问题。他把学生视为“发现者”,甚至像科学家那样去发现,教师不给任何启发和帮助。创导者认为,这种学习方式可以最大限度地发挥学生的积极性、主动性和创造性,启迪学生的智慧,培养探索能力和独立获取知识的能力。20世纪70年代传入中国时,我国教育家将“发现法”引申为“引导发现法”,主张在必要时教师可以适当给学生一点“引导”,与布鲁纳的“纯发现法”有些区别。教学实践折射出这样一个道理,外国的先进经验或理论的引入,必须本土化才能发挥其积极作用。我国目前强调的“自主探索”与“发现学习”亦基本相同。
美国另一位著名的教育心理学家d.p.奥苏伯尔针对20世纪60年代许多人以为讲授必然会导致机械学习,而发现学习才是有意义的学习的片面看法,在创造性地吸取了j.p.皮亚杰和布鲁纳等人的认知观点后,首先对学习进行了两个维度的不同分类。根据学习的深度分为有意义学习与机械学习,根据学习的方式分为发现学习与接受学习。两种分类相互独立,成为正交(见下图)。
有意义学习↑有意义的接受学习;有意义的发现学习;机械学习;│机械的接受学习;机械的发现学习;接受学习;发现学习
他不像布鲁纳那样只强调发现学习,认为学习可以分为有意义的发现学习和有意义的接受学习,而后者是学生的主要学习方式。奥苏伯尔的见解对我们研究小学生的数学学习是有启发的。
小学生学习数学,首先要掌握前人积累的数学基础知识(往往以符号形式表示),学生必须积极思考,理解每个符号、式子所代表的实际意义,才能真正内化成自己的认识。如果学习中仅仅记住这些符号的代表组合,例如,只知道读作“三分之二”,却不明其意,这就是机械学习。一般的数学学习都是有意义的学习,当然不排斥个别
儿童数学教育课程心得体会如何写 幼儿数学培训心得体会范文(5篇)
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。