电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

关于学习制造业强国心得体会实用(五篇)

来源:互联网作者:editor2024-02-162

学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会那么下面我就给大家讲一讲心得体会怎么写才比较好,我们一起来看一看吧。

关于学习制造业强国心得体会实用一

②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

体思想求解.

(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

1、 数列的定义及表示方法:

2、 数列的项与项数:

3、 有穷数列与无穷数列:

4、 递增(减)、摆动、循环数列:

5、 数列的通项公式an:

6、 数列的前n项和公式sn:

7、 等差数列、公差d、等差数列的结构:

8、 等比数列、公比q、等比数列的结构:

9、一般数列的通项an与前n项和sn的关系:an=

10、等差数列的通项公式:an=a1 (n-1)d an=ak (n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。

11、等差数列的前n项和公式:sn= sn= sn=

当d0时,sn是关于n的二次式且常数项为0;当d=0时(a10),sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an0)

13、等比数列的前n项和公式:当q=1时,sn=n a1 (是关于n的正比例式);

当q1时,sn= sn=

14、等差数列的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m - s3m、仍为等差数列。

15、等差数列中,若m n=p q,则

16、等比数列中,若m n=p q,则

17、等比数列的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m - s3m、仍为等比数列。

18、两个等差数列与的和差的数列、仍为等差数列。

19、两个等比数列与的积、商、倒数组成的数列

、 、 仍为等比数列。

20、等差数列的任意等距离的项构成的数列仍为等差数列。

21、等比数列的任意等距离的项构成的数列仍为等比数列。

22、三个数成等差的设法:a-d,a,a d;四个数成等差的设法:a-3d,a-d,,a d,a 3d

23、三个数成等比的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3

24、为等差数列,则 (c0)是等比数列。

25、(bn0)是等比数列,则 (c0且c 1) 是等差数列。

26、分组法求数列的和:如an=2n 3n

27、错位相减法求和:如an=(2n-1)2n

28、裂项法求和:如an=1/n(n 1)

29、倒序相加法求和:

30、求数列的最大、最小项的方法:

① an 1-an= 如an= -2n2 29n-3

② an=f(n) 研究函数f(n)的增减性

31、在等差数列 中,有关sn 的最值问题常用邻项变号法求解:

(1)当 0时,满足 的项数m使得 取最大值.

(2)当 0时,满足 的项数m使得 取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

以上就是高二数学学习:高二数学数列的所有内容,希望对大家有所帮助!

关于学习制造业强国心得体会实用二

1、知识的提高:通过读书让自己成为更富有内涵、修养的幼儿教师,让自己的知识更富有、更充实。

2、思想的提高:在读书中提高自己的思想境界。

3、能力的提高:在实际的教育教学中努力提高自己的教学能力。

1。学前教育理论学习(3——6岁儿童学习与发展指南)

2、杂志:(特别文摘)

1、积极参加园内组织的集体读书学习活动。

2、充分利用业余时间,每天保证半小时的读书时间,让读书成为自己每天生活节奏的一部分,读书学习成为自己的一种需。要。

3、读书过程中记下自己的观点和看法,积极与老师们交流学习,在教育教学中要多反思、多总结,认真书写读书心得。

4、坚持做好读书笔记,摘录教育教学中值得学习的知识。

关于学习制造业强国心得体会实用三

20__年,市园林处一如既往高度重视干部培训工作,紧密联系园林绿化建设与管理的实际,全面加强干部的理论与业务培训工作,把学习理论和推进工作相结合、理论实践和理论创新相结合,努力提高党员、干部的理论修养、思想层次、理论水平和业务能力,通过参加各类培训,进一步提高了全处干部队伍的综合素质和能力,促进了园林各项工作的和谐发展。现将一年来的培训情况总结如下:

一、基本做法和主要成效

(一)健全组织,加强领导。

年初,处领导班子经过研究,将培训工作列为今年的一项重点工作,精心制定了全

关于学习制造业强国心得体会实用(五篇)

学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?